Determination of the dose rate around a HDR 192Ir brachytherapy source with the microDiamond and the microSilicon detector

Giulio Rossi1,2, Thomas Failing3,4, Mark Gainey1,2, Michael Kollefrath1,2, Frank Hensley5, Klemens Zink3,6,7, Dimos Baltas1,2
1Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
2German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
3University of Applied Sciences Giessen, Institute of Medical Physics and Radiation Protection, Giessen, Germany
4University Medical Center Göttingen, Department of Radiation Oncology, Göttingen, Germany
5University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
6University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiation Oncology, Marburg, Germany
7Marburg Ionbeam Therapycenter (MIT), Marburg, Germany

Tài liệu tham khảo

Perez-Calatayud, 2012, Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO, Med Phys, 39, 2904, 10.1118/1.3703892 Kaveckyte, 2018, Suitability of microDiamond detectors for the determination of absorbed dose to water around high-dose-rate 192Ir brachytherapy sources, Med Phys, 45, 429, 10.1002/mp.12694 Muller-Runkel, 1994, Anisotropy measurements of a high dose rate Ir-192 source in air and in polystyrene, Med Phys, 21, 1131, 10.1118/1.597339 Kirov, 1995, TLD, diode and Monte Carlo dosimetry on an 192Ir source for high dose-rate brachytherapy, Phys Med Biol, 40, 2015, 10.1088/0031-9155/40/12/002 Meigooni, 1997, Dosimetric characteristics of a new high intensity 192Ir source for remote afterloading, Med Phys, 24, 2008, 10.1118/1.598114 Karaiskos, 1998, Monte Carlo and TLD dosimetry of an 192Ir high dose-rate brachytherapy source, Med Phys, 25, 1975, 10.1118/1.598371 Anctil, 1998, Experimental determination of dosimetry functions of Ir-192 sources, Med Phys, 25, 2279, 10.1118/1.598457 Sharma, 2004, Radiochromic film measurement of anisotropy function for high-dose-rate Ir-192 brachytherapy source, Phys Med Biol, 45, 4065, 10.1088/0031-9155/49/17/016 Ayoobian, 2016, Gafchromic film dosimetry of a new HDR 192Ir brachytherapy source, J Appl Clin Med Phys, 17, 194, 10.1120/jacmp.v17i2.6005 Baltas, 1993, Measurements of the anisotropy of the new Ir-192 source for the microSelectron-HDR, Activity Special Report, 3, 2 Mishra, 1997, Anisotropy of an 192iridium high dose rate source measured with a miniature ionization chamber, Med Phys, 24, 751, 10.1118/1.597983 Zilio, 2006, Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors, Med Phys, 33, 1532, 10.1118/1.2198168 Piermattei, 1995, p-type silicon detector for brachytherapy dosimetry, Med Phys, 22, 835, 10.1118/1.597486 Rossi, 2019, Monte Carlo and experimental 192Ir brachytherapy dosimetry with microDiamond detectors, Z Med Phys, 29, 272, 10.1016/j.zemedi.2018.09.003 Rossi, 2020, Suitability of the microDiamond detector for experimental determination of the anisotropy function of High Dose Rate 192Ir brachytherapy sources, Med Phys, 47, 5838, 10.1002/mp.14488 Schönfeld, 2019, Technical Note: Characterization of the new microSilicon diode detector, Med Phys, 46, 4257, 10.1002/mp.13710 Weber, 2019, Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors, Med Phys, 46, 4257 Blum, 2021, The dose reponse of the PTW microDiamond and microSilicon in transverse magnetic field under small field conditions, Phys Med Biol, 66, 10.1088/1361-6560/ac0f2e Georgiou, 2021, The PTW microSilicon diode: Performance in small 6 and 15 MV photon fields and utility of density compensation, Med Phys, 48, 8062, 10.1002/mp.15329 TG-43 database for 192Ir HDR sources from GEC-ESTRO BRAPHYQS Working Group. https://www.estro.org/About/ESTRO-Organisation-Structure/Committees/GEC-ESTRO-Committee/GEC-ESTRO-BRAPHYQS/Ir-192-HDR. Accessed November 2021. Wulff, 2008, Efficiency improvements for ion chamber calculations in high energy photon beams, Med Phys, 35, 1328, 10.1118/1.2874554 Kawrakow, 2000, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version, Med Phys, 27, 485, 10.1118/1.598917 Kawrakow I, Rogers DWO. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. NRCC Report No. PIRS-701. National Research Council of Canada; 2006. Sechopoulos, 2018, RECORDS: improved Reporting of montE carlO RaDiation Studies: Report of the AAPM Research Committee Task Group 268, Med Phys, 45, e1, 10.1002/mp.12702 Mora, 1999, Monte Carlo simulation of a typical 60Co therapy source, Med Phys, 26, 2494, 10.1118/1.598770 Baglin, 2012, Nuclear Data Sheets for A = 192, Nuclear Data Sheets, 113, 1871, 10.1016/j.nds.2012.08.001 XCOM: Photon Cross Sections Database. NIST. https://www.nist.gov/pml/xcom-photon-cross-sections-database. Accessed April 2022. Jcgm, 2008, Evaluation of measurement data—Guide to the expression of Uncertainty in Measurement (GUM). Report 100 Nath, 1995, Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43, Med Phys, 22, 209, 10.1118/1.597458 Rivard, 2004, Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations, Med Phys, 31, 633, 10.1118/1.1646040 Goorley, 2012, Initial MCNP6 release overview, Nucl Technol, 180, 298, 10.13182/NT11-135 DeWerd, 2011, A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO, Med Phys, 38, 782, 10.1118/1.3533720 Granero, 2011, Dosimetry revisited for the HDR 192Ir brachytherapy source model mHDR-v2, Med Phys, 38, 487, 10.1118/1.3531973 Looe, 2019, The role of radiation-induced charge imbalance on the dose-response of a commercial synthetic diamond detector in small field dosimetry, Med Phys, 46, 2752, 10.1002/mp.13542