Determination of strewn fields for meteorite falls

Monthly Notices of the Royal Astronomical Society - Tập 503 Số 3 - Trang 3337-3350 - 2021
Jarmo Moilanen1,2, Maria Gritsevich1,2,3, E. Lyytinen1
1Finnish Fireball Network, Ursa Astronomical Association, Kopernikuksentie 1, FI-00130 Helsinki, Finland
2Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430 Masala, Finland
3Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia

Tóm tắt

ABSTRACTWhen an object enters the atmosphere it may be detected as a meteor. A bright meteor, called a fireball, may be a sign of a meteorite fall. Instrumentally observed meteorite falls provide unique opportunities to recover and analyse unweathered planetary samples supplemented with the knowledge on the Solar system orbit they had. To recover a meteorite from a fireball event, it is essential that recovery teams can be directed to a well-defined search area. Until recently, simulations showing the realistic mapping of a strewn field were difficult, in particular due to the large number of unknowns not directly retrieved from the fireball observations. These unknowns include the number of fragments and their aerodynamic properties, for which the masses of the fragments need to be assumed in a traditional approach. Here, we describe a new Monte Carlo model, which has already successfully assisted in several meteorite recoveries. The model is the first of its kind as it provides an adequate representation of the processes occurring during the luminous trajectory coupled together with the dark flight. In particular, the model comprises a novel approach to fragmentation modelling that leads to a realistic fragment mass distribution on the ground. We present strewn field simulations for the well-documented Košice and Neuschwanstein meteorite falls, which demonstrate good matches to the observations. We foresee that our model can be used to revise the flux of extra-terrestrial matter onto the Earth, as it provides a possibility of estimating the terminal mass of meteorite fragments reaching the ground.

Từ khóa


Tài liệu tham khảo

Andreić, 2011, Proceedings of the IMC, 23

Borovička, 2013, Meteorit. Planet. Sci., 48, 1757, 10.1111/maps.12078

Bouquet, 2014, Planet. Space Sci., 103, 238, 10.1016/j.pss.2014.09.001

Brown, 2019, Meteorit. Planet. Sci., 52, 2027, 10.1111/maps.13368

Carter, 2009, 40 Lunar and Planetary Science Conference

Ceplecha, 1987, Bull. Astron. Inst. Czech., 38, 222

Cook, 2013, Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, 3, 608

Devillepoix, 2018, Meteorit. Planet. Sci., 52, 2212, 10.1111/maps.13142

Dmitriev, 2015, Planet. Space Sci., 117, 223, 10.1016/j.pss.2015.06.015

Drolshagen, 2020

French, 1998, Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures

Gritsevich, 2008, Sol. Syst. Res., 42, 372, 10.1134/S003809460805002X

Gritsevich, 2008, Dokl. Phys., 53, 97, 10.1134/S1028335808020110

Gritsevich, 2008, Dokl. Phys., 53, 588, 10.1134/S1028335808110098

Gritsevich, 2009, Adv. Space Res., 44, 323, 10.1016/j.asr.2009.03.030

Gritsevich, 2008, Dokl. Phys., 53, 88, 10.1134/S1028335808020092

Gritsevich, 2011, Icarus, 212, 877, 10.1016/j.icarus.2011.01.033

Gritsevich, 2006, Sol. Syst. Res., 40, 477, 10.1134/S0038094606060050

Gritsevich, 2008, Sol. Syst. Res., 42, 118, 10.1134/S0038094608020032

Gritsevich, 2012, Cosmic Res., 50, 56, 10.1134/S0010952512010017

Gritsevich, 2014, Meteorit. Planet. Sci., 49, A143, 10.1111/maps.12252

Gritsevich, 2014, Proceedings of the IMC, 162

Gritsevich, 2014, Meteorit. Planet. Sci., 49, 328, 10.1111/maps.12252

Gritsevich, 2017, Astrophysics and Space Science Proceedings, Vol. 46, 153, 10.1007/978-3-319-46179-3_8

Halliday, 1996, Meteorit. Planet. Sci., 31, 185, 10.1111/j.1945-5100.1996.tb02014.x

Heinlein, 2004

Jansen-Sturgeon, 2020, AJ, 160, 190, 10.3847/1538-3881/abb090

Jenniskens, 2021, MAPS

Kohout, 2014, Icarus, 228, 78, 10.1016/j.icarus.2013.09.027

Kohout, 2014, Planet. Space Sci., 93, 96, 10.1016/j.pss.2014.02.003

Kohout, 2017, Meteorit. Planet. Sci., 52, 1525, 10.1111/maps.12871

Levin, 1956, Physical Theory of Meteors and Meteoric Matter in the Solar System

Lyytinen, 2013, Proceedings of the International Meteor Conference 2012, Vol. 2, 155

Lyytinen, 2016, Proceedings of the International Meteor Conference 2016, 159

Lyytinen, 2016, Planet. Space Sci., 120, 35, 10.1016/j.pss.2015.10.012

McCrosky, 1967, SAO Special Report #252

Maksimova, 2020, Meteorit. Planet. Sci., 55, 231, 10.1111/maps.13423

MBD, 2021, Meteoritic Bulletin Database

MPC, 2021

Meier, 2017, Meteorit. Planet. Sci., 52, 1561, 10.1111/maps.12874

Molaro, 2020, Nat. Commun., 11, 2913, 10.1038/s41467-020-16528-7

Moreno-Ibáñez, 2015, Icarus, 250, 544, 10.1016/j.icarus.2014.12.027

Moreno-Ibáñez, 2017, Assessment and Mitigation of Asteroid Impact Hazards, 129, 10.1007/978-3-319-46179-3_7

Moreno-Ibáñez, 2018, ApJ, 863, 174, 10.3847/1538-4357/aad334

Moreno-Ibáñez, 2020, MNRAS, 494, 316, 10.1093/mnras/staa646

NASA, 2020

Nash, 2015, Instruments and Observing Methods Report No. 121

Oberst, 2004, Meteoritics Planet. Sci., 39, 1627, 10.1111/j.1945-5100.2004.tb00062.x

Park, 2012, AJ, 144, 184, 10.1088/0004-6256/144/6/184

Peña-Asensio, 2021, MNRAS

Povinec, 2015, Meteorit. Planet. Sci., 50, 880, 10.1111/maps.12380

Sansom, 2017, AJ, 153, 87, 10.3847/1538-3881/153/2/87

Sansom, 2019, Icarus, 321, 388, 10.1016/j.icarus.2018.09.026

Sansom, 2019, ApJ, 885, 115, 10.3847/1538-4357/ab4516

Sharp, 2006, Meteorites and the Early Solar System II, 653, 10.2307/j.ctv1v7zdmm.37

Silber, 2018, Adv. Space Res., 62, 489, 10.1016/j.asr.2018.05.010

Spurný, 2003, Nature, 423, 151, 10.1038/nature01592

Spurný, 2012, Meteorit. Planet. Sci., 47, 163, 10.1111/j.1945-5100.2011.01321.x

Spurný, 2014, A&A, 570, A39, 10.1051/0004-6361/201424308

Stulov, 1995, Fireballs Aerodynamics

Tabetah, 2018, Meteorit. Planet. Sci., 53, 493, 10.1111/maps.13034

Tóth, 2015, Meteorit. Planet. Sci., 50, 853, 10.1111/maps.12447

Trigo-Rodríguez, 2015, MNRAS, 449, 2119, 10.1093/mnras/stv378

Turchak, 2014, J. Theor. Appl. Mech., 44, 15, 10.2478/jtam-2014-0020

Vinković, 2020, Journal of the Geographical Institute Jovan Cvijic SASA, 70, 45, 10.2298/IJGI2001045V

Vinnikov, 2016, AIP Conf. Proc. Vol. 1773, Application of Mathematics in Technical and Natural Sciences: 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, 110016, 10.1063/1.4965020

Wenk, 2011, Minerals: Their Constitution and Origin, 5