Determination of regions involved in amyloid fibril formation for Aβ(1-40) peptide

Biochemistry (Moscow) - Tập 81 Số 7 - Trang 762-769 - 2016
Alexey K. Surin1,2, Elizaveta I. Grigorashvili1, Mariya Yu. Suvorina1, Olga M. Selivanova1, Oxana V. Galzitskaya1
1Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
2State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dovidchenko, N. V., and Galzitskaya, O. V. (2015) Computational approaches to identification of aggregation sites and the mechanism of amyloid growth, Adv. Exp. Med. Biol., 855, 213–239.

Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) Is it possible to predict amyloidogenic regions from sequence alone? J. Bioinform. Comput. Biol., 4, 373–388.

Galzitskaya, O. V., Garbuzynskiy, S. O., and Lobanov, M. Y. (2006) Prediction of amyloidogenic and disordered regions in protein chains, PLoS Comput. Biol., 2, e177.

Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence, Bioinformatics, 26, 326–332.

Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W. H., and Rousseau, F. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nat. Methods, 7, 237–242.

Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA 2.0: an improved server for protein aggregation prediction, Nucleic Acids Res., 42, W301-307.

Aguzzi, A. (2009) Cell biology: beyond the prion principle, Nature, 459, 924–925.

Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., and Knowles, T. P. J. (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci. USA, 110, 9758–9763.

Dovidchenko, N. V., Finkelstein, A. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation, J. Phys. Chem. B, 118, 1189–1197.

Meisl, G., Yang, X., Hellstrand, E., Frohm, B., Kirkegaard, J. B., Cohen, S. I. A., Dobson, C. M., Linse, S., and Knowles, T. P. J. (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides, Proc. Natl. Acad. Sci. USA, 111, 9384–9389.

Suvorina, M. Y., Selivanova, O. M., Grigorashvili, E. I., Nikulin, A. D., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2015) Studies of polymorphism of amyloid-β42 peptide from different suppliers, J. Alzheimer’s Dis., 47, 583–593.

Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R. W., and Rosch, P. (1995) Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease, Eur. J. Biochem., 233, 293–298.

Tomaselli, S., Esposito, V., Vangone, P., Van Nuland, N. A. J., Bonvin, A. M. J. J., Guerrini, R., Tancredi, T., Temussi, P. A., and Picone, D. (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding, Chembiochem, 7, 257–267.

Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., and Tycko, R. (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue, Cell, 154, 1257–1268.

Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D., and Riek, R. (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils, Proc. Natl. Acad. Sci. USA, 102, 17342–17347.

Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cellsurface receptor, Nature, 325, 733–736.

Selkoe, D. J. (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases, Nat. Cell Biol., 6, 1054–1061.

Dahlgren, K. N., Manelli, A. M., Stine, W. B., Baker, L. K., Krafft, G. A., and LaDu, M. J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability, J. Biol. Chem., 277, 32046–32053.

Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S., and Glabe, C. G. (1997) Soluble amyloid Aβ-(1-40) exists as a stable dimer at low concentrations, J. Biol. Chem., 272, 21037–21044.

Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1999) Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease, Biochemistry, 38, 8972–8980.

Haass, C., Schlossmacher, M. G., Hung, A. Y., VigoPelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism, Nature, 359, 322–325.

Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003) APP processing and synaptic function, Neuron, 37, 925–937.

Jarrett, J. T., and Lansbury, P. T. (1993) Seeding “onedimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73, 1055–1058.

Carrotta, R., Manno, M., Bulone, D., Martorana, V., and San Biagio, P. L. (2005) Protofibril formation of amyloid βprotein at low pH via a non-cooperative elongation mechanism, J. Biol. Chem., 280, 30001–30008.

Talmard, C., Leuma Yona, R., and Faller, P. (2009) Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially a-helical conformer to aggregates of amyloid β protein(1-28), J. Biol. Inorg. Chem., 14, 449–455.

Ma, Q.-F., Hu, J., Wu, W.-H., Liu, H.-D., Du, J.-T., Fu, Y., Wu, Y.-W., Lei, P., Zhao, Y.-F., and Li, Y.-M. (2006) Characterization of copper binding to the peptide amyloidβ(1-16) associated with Alzheimer’s disease, Biopolymers, 83, 20–31.

Turner, A. J., Fisk, L., and Nalivaeva, N. N. (2004) Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration, Ann. N. Y. Acad. Sci., 1035, 1–20.

Zhang, Y., Rempel, D. L., Zhang, J., Sharma, A. K., Mirica, L. M., and Gross, M. L. (2013) Pulsed hydrogen–deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation, Proc. Natl. Acad. Sci. USA, 110, 14604–14609.

Lichtenthaler, S. F., Haass, C., and Steiner, H. (2011) Regulated intramembrane proteolysis–lessons from amyloid precursor protein processing, J. Neurochem., 117, 779–796.

Finder, V. H., and Glockshuber, R. (2007) Amyloid-β aggregation, Neurodegener. Dis., 4, 13–27.

Dovidchenko, N. V., Glyakina, A. V., Selivanova, O. M., Grigorashvili, E. I., Suvorina, M. Y., Dzhus, U. F., Mikhailina, A. O., Shiliaev, N. G., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42, J. Struct. Biol., 194, 404–414.

Kodali, R., Williams, A. D., Chemuru, S., and Wetzel, R. (2010) Aβ(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated, J. Mol. Biol., 401, 503–517.