Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy

Alexander Boreham1, Pierre Volz1, Daniel Peters2, Cornelia M. Keck3, Ulrike Alexiev1
1Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin, Germany
2Freie Universität Berlin, Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Kelchstrasse 31, 12169 Berlin, Germany
3Institute of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Philipps-Universität Marburg, Ketzerbach 63, 35032 Marburg, Germany

Tài liệu tham khảo

Müller, 2011, 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications, Curr. Drug. Discov. Technol., 8, 207, 10.2174/157016311796799062 Keck, 2012, Partikelgrößenanalytik für Nanopartikel - Ein Kinderspiel oder doch eine verflixte Kiste?, TechnoPharm, 4, 279 Saupe, 2006, Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy, Int. J. Pharm., 314, 56, 10.1016/j.ijpharm.2006.01.022 Jores, 2004, Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy, J. Control. Release, 95, 217, 10.1016/j.jconrel.2003.11.012 Dubes, 2003, Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins, Eur. J. Pharm. Biopharm., 55, 279, 10.1016/S0939-6411(03)00020-1 Bunjes, 2001, Incorporation of the model drug ubidecarenone into solid lipid nanoparticles, Pharm. Res., 18, 287, 10.1023/A:1011042627714 Esposito, 2008, Solid lipid nanoparticles as delivery systems for bromocriptine, Pharm. Res., 25, 1521, 10.1007/s11095-007-9514-y Araujo, 2010, Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications, Int. J. Pharm., 393, 167, 10.1016/j.ijpharm.2010.03.034 Jia, 2010, Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies, Colloids Surf., B, 80, 213, 10.1016/j.colsurfb.2010.06.008 Luan, 2014, Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers, Colloids Surf., B, 114, 255, 10.1016/j.colsurfb.2013.10.018 D. Peters, Antioxidative Lipidnanopartikel für die dermale Anwendung, in: Thesis, Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, 2014. Müller, 2002, Nanostructured lipid matrices for improved microencapsulation of drugs, Int. J. Pharm., 242, 121, 10.1016/S0378-5173(02)00180-1 Selvamuthukumar, 2012, Nanostructured Lipid Carriers: a potential drug carrier for cancer chemotherapy, Lipids Health Dis., 11, 10.1186/1476-511X-11-159 Alnasif, 2014, Penetration of normal, damaged and diseased skin–an in vitro study on dendritic core-multishell nanotransporters, J. Control. Release, 185, 45, 10.1016/j.jconrel.2014.04.006 Boreham, 2014, Temperature and environment dependent dynamic properties of a dendritic polyglycerol sulfate, Polym. Adv. Technol., 25, 1329, 10.1002/pat.3355 Boreham, 2011, Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues, ACS Med. Chem. Lett., 2, 724, 10.1021/ml200092m Boreham, 2014, Nanodynamics of dendritic core–multishell nanocarriers, Langmuir, 30, 1686, 10.1021/la4043155 Boreham, 2016, Detecting and quantifying biomolecular interactions of a dendritic polyglycerol sulfate nanoparticle using fluorescence lifetime measurements, Molecules, 21 Brewer, 2013, Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration, J. Invest. Dermatol., 133, 1260, 10.1038/jid.2012.461 Konig, 2011, Applications of multiphoton tomographs and femtosecond laser nanoprocessing microscopes in drug delivery research, Adv. Drug Deliv. Rev., 63, 388, 10.1016/j.addr.2011.03.002 Nienhaus, 2013, Studying the protein corona on nanoparticles by FCS, Methods Enzymol., 519, 115, 10.1016/B978-0-12-405539-1.00004-X Anderson, 1992, Tracking of cell-surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera - low-density-lipoprotein and influenza-virus receptor mobility at 4-degrees-C, J. Cell Sci., 101, 415, 10.1242/jcs.101.2.415 Nordlund, 1914, Eine neue Bestimmung der Avogadroschen Konstante aus der Brownschen Bewegung kleiner, Wasser suspendierter Quecksilberkugelchen, Z. Phys. Chem. - Stoch. Ve., 87, 40 Qian, 1991, Single-particle tracking - analysis of diffusion and flow in 2-dimensional systems, Biophys. J., 60, 910, 10.1016/S0006-3495(91)82125-7 Betzig, 2006, Imaging intracellular fluorescent proteins at nanometer resolution, Science, 313, 1642, 10.1126/science.1127344 Heilemann, 2008, Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem., Int. Ed., 47, 6172, 10.1002/anie.200802376 Rust, 2006, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 3, 793, 10.1038/nmeth929 Kim, 2012, Activation and molecular recognition of the GPCR rhodopsin – insights from time-resolved fluorescence depolarisation and single molecule experiments, Eur. J. Cell Biol., 91, 300, 10.1016/j.ejcb.2011.03.009 Kirchberg, 2010, Functional interaction structures of the photochromic retinal protein rhodopsin, Photochem. Photobiol. Sci., 9, 226, 10.1039/b9pp00134d Huang, 2009, Super-resolution fluorescence microscopy, Annu. Rev. Biochem., 78, 993, 10.1146/annurev.biochem.77.061906.092014 Patel, 2012, Nanostructured Lipid Carriers (NLC)-based gel for the topical delivery of aceclofenac: preparation, characterization, and in vivo evaluation, Sci. Pharm., 80, 749, 10.3797/scipharm.1202-12 Alexiev, 1837, Fluorescence spectroscopy of rhodopsins: insights and approaches, Biochim. Biophys. Acta, Bioenerg., 2014, 694 Kim, 2009, Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation, Biochemistry, 48, 3801, 10.1021/bi900308c Volz, 2015, Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin, Int. J. Mol. Sci., 16, 6960, 10.3390/ijms16046960 Kues, 2001, High intranuclear mobility and dynamic clustering of the splicing factor U1 snRNP observed by single particle tracking, Proc. Natl. Acad. Sci. USA, 98, 12021, 10.1073/pnas.211250098 Solomon, 1978, 6. Random Chords in the Circle and the Sphere, 127 Saxton, 1993, Lateral diffusion in an archipelago. Single-particle diffusion, Biophys. J., 64, 1766, 10.1016/S0006-3495(93)81548-0 V. Buschmann, B. Krämer, F. Koberling, R. Macdonald, S. Rättinger, Quantitative FCS: determination of the confocal volume by FCS and bead scanning with the microtime 200, Application Note PicoQuant GmbH, Berlin, 2009. Haag, 2011, Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy, Int. J. Pharm., 421, 364, 10.1016/j.ijpharm.2011.10.009 Borgia, 2005, Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy, J. Control. Release, 110, 151, 10.1016/j.jconrel.2005.09.045 Jores, 2005, Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy, Pharm. Res., 22, 1887, 10.1007/s11095-005-7148-5 Keck, 2014, Oil-enriched, ultra-small nanostructured lipid carriers (usNLC): a novel delivery system based on flip-flop structure, Int. J. Pharm., 477, 227, 10.1016/j.ijpharm.2014.10.029 R.H. Müller, R. Ruick, C.M. Keck, smartLipids – the next generation of lipid nanoparticles by optimized design of particle matrix, in: DPhG-Jahrestagung, 24–26. September, Frankfurt a.M./Germany, po. 27 2014, pp. 27.