Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide

Microchimica Acta - Tập 182 - Trang 1967-1975 - 2015
Ningning Chen1, Yuxiao Cheng2, Chen Li2, Cuiling Zhang1, Kai Zhao1, Yuezhong Xian1
1Department of Chemistry, School of Chemistry and Engineering, East China Normal University, Shanghai, China
2Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China

Tóm tắt

We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials.

Tài liệu tham khảo

Akter H, Shaikh AA, Chowdhury TR, Rahman MS, Bakshi PK, Ahammad AJS (2013) Gold nanoparticle-modified indium tin oxide electrode for highly sensitive electrochemical detection of melamine. ECS Electrochem Lett 2(8):B13–B15. doi:10.1149/2.001309eel Yang SP, Ding JH, Zheng J, Hu B, Li JQ, Chen HW, Zhou ZQ, Qiao XL (2009) Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81(7):2426–2436. doi:10.1021/ac900063u Li JH, Kuang DZ, Feng YG, Zhang FZ, Xu ZF, Liu MQ (2012) A novel electrochemical method for sensitive detection of melamine in infant formula and milk using ascorbic acid as recognition rlement. Bull Kor Chem Soc 33(8):2499–2507. doi:10.5012/bkcs.2012.33.8.2499 Vasimalai N, John SA (2013) Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Biosens Bioelectron 42:267–272. doi:10.1016/j.bios.2012.10.023 Liu SJ, Yang L, Yan QJ (2012) Research progress on migration of toxic and harmful substances in melamine tableware. Plastic Sci Technol 40(9):75–79. doi:10.1016/j.aca.2010.07.002 Wen YY, Liu HT, Han P, Gao Y, Luan F, Li XY (2010) Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: a good alternative to HPLC. J Sci Food Agric 90(13):2178–2182. doi:10.1002/jsfa.4066 Sun HW, Wang LX, Ai LF, Liang SX, Wu H (2010) A sensitive and validated method for determination of melamine residue in liquid milk by reversed phase high-performance liquid chromatography with solid-phase extraction. Food Control 21(5):686–691. doi:10.1016/j.foodcont.2009.10.008 Xu XM, Ren YP, Zhu Y, Cai ZX, Han JL, Huang BF, Zhu Y (2009) Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal Chim Acta 650(1):39–43. doi:10.1016/j.aca.2009.04.026 Dai HC, Shi YL, Wang YJ, Sun YJ, Hu JT, Ni PJ, Li Z (2014) Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens Bioelectron 53:76–81. doi:10.1016/j.bios.2013.09.034 Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27):9496–9497. doi:10.1021/ja9037017 Xu Q, Wei HP, Du S, Li HB, Ji ZP, Hu XY (2013) Detection of subnanomolar melamine based on electrochemical accumulation coupled with enzyme colorimetric assay. J Agric Food Chem 61(8):1810–1817. doi:10.1021/jf304034e Zhang JM, Qu SC, Zhang LS, Tang AW, Wang ZG (2011) Quantitative surface enhanced raman scattering detection based on the “sandwich” structure substrate. Spectrochim Acta A 79(3):625–630. doi:10.1016/j.saa.2011.03.045 Cao Q, Zhao H, Zeng LX, Wang J, Wang R, Qiu XH, He YJ (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80(2):484–488. doi:10.1016/j.talanta.2009.07.006 Jin GP, Yu B, Chen ZX, Chen XY, Zhang M, Zhao C (2011) Electrochemical behaviors and determination of melamine in neutral and acid aqueous media. J Solid State Electrochem 15(11–12):2653–2659. doi:10.1007/s10008-010-1249-8 Zhu H, Zhang SX, Li MX, Shao YH, Zhu ZW (2010) Electrochemical sensor for melamine based on its copper complex. Chem Commun 46(13):2259–2261. doi:10.1039/b924355k Zhang LM, Li T, Yu P, Ohsaka T, Mao LQ (2013) Charge-transfer interaction between melamine and quinones: towards voltammetric determination of melamine. Electrochem Commun 26:89–92. doi:10.1016/j.elecom.2012.10.026 Liu FY, Yang X, Sun SG (2011) Determination of melamine based on electrochemiluminescence of Ru(bpy)3 2+ at bare and single-wall carbon nanotube modified glassy carbon electrodes. Analyst 136(2):374–378. doi:10.1039/c0an00765j Liu FY, Gao YL, Li W, Shao JT (2014) Determination of melamine based on electrochemiluminescence of Ru(bpy)3 2+ at chemically converted graphene-modified glassy carbon electrode. RSC Adv 4(64):34003–34007. doi:10.1039/c4ra03918a Cao HM, Hu XQ, Hu CY, Zhang Y, Jia NQ (2013) A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)3 2+/mesoporous silica nanospheres/Nafion composite modified electrode. Biosens Bioelectron 41:911–915. doi:10.1016/j.bios.2012.10.004 Zhou LM, Huang JS, Yang L, Li L, You TY (2014) Enhanced electrochemiluminescence based on Ru(bpy)3 2+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta 824:57–63. doi:10.1016/j.aca.2014.03.035 Liao CW, Chen YR, Chang JL, Zen JM (2011) A Sensitive electrochemical approach for melamine detection using a disposable screen printed carbon electrode. Electroanalysis 23(3):573–576. doi:10.1002/elan.201000605 Cao Q, Zhao H, He YJ, Ding N, Wang J (2010) Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element. Anal Chim Acta 675(1):24–28. doi:10.1016/j.aca.2010.07.002 Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180. doi:10.1039/b923596e Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695. doi:10.1021/ja110313d Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266. doi:10.1021/jp800977b Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20(21):6792–6797. doi:10.1021/cm801356a Cui SM, Mao S, Lu GH, Chen JH (2013) Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J Phys Chem Lett 4(15):2441–2454. doi:10.1021/jz400976a Yi L, Li BB, Wei W, Wan QJ, Yang NJ (2013) A simple and high-performance hydrazine sensor based on graphene nano platelets supported metal nanoparticles. Adv Mater Res 704:246–251. doi:10.4028/www.scientific.net/AMR.704.246 Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface ongold nucleation and growth. Chem Mater 21(20):4796–4802. doi:10.1021/cm901052s Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite and its application to amperometric sensing of dopamine. Microchim Acta 177(3–4):325–331. doi:10.1007/s00604-012-0782-9 Ma XM, Liu ZN, Qiu CC, Chen T, Ma HY (2013) Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchim Acta 180(5-6):461–468. doi:10.1007/s00604-013-0949-z Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FY, Yan QY, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846. doi:10.1021/jp903821n Le ZG, Liu Z, Qian Y, Wang CY (2012) A facile and efficient approach to decoration of graphene nanosheets with gold nanoparticles. Appl Surf Sci 258(14):5348–5353. doi:10.1016/j.apsusc.2012.01.169 Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434. doi:10.1016/j.cej.2014.04.004 Fu XQ, Bei FL, Wang X, O’Brien S, Lombardi JR (2010) Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2(8):1461–1466. doi:10.1039/c0nr00135j Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21(21):7604–7611. doi:10.1039/c1jm10293a Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151. doi:10.1021/nn3010922 Li L, Li BX, Cheng D, Mao LH (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122(3):895–900. doi:10.1016/j.foodchem.2010.03.032 Ramadoss A, Kim SJ (2013) Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. Mater Chem Phys 140(1):405–411. doi:10.1016/j.matchemphys.2013.03.057 Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, Li XT, Yan XN, Wang LL (2011) Electrochemical sensor based on a poly (para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56(12):4595–4602. doi:10.1016/j.electacta.2011.02.088 Xin JY, Zhang LX, Chen DD, Lin K, Fan HH, Wang Y, Xia CG (2015) Colorimetric detection of melamine based on methanobactin-mediated synthesis of gold nanoparticles. Food Chem 174:473–479 Song J, Wu FY, Wan YQ, Ma LH (2014) Visual test for melamine using silver nanoparticles modified with chromotropic acid. Microchim Acta 181:1267–1274. doi:10.1007/s00604-014-1227-4 Wu QQ, Long Q, Li HT, Zhang YY, Yao SZ (2015) An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Talanta 136:47–53. doi:10.1016/j.talanta.2015.01.005 Dai HC, Shi Y, Wang YL, Sun YJ, Hu JT, Ni PJ, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B 202:201–208. doi:10.1016/j.snb.2014.05.058 Hu YX, Feng SL, Gao F, Li-Chan ECY, Lu XN (2015) Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem 176:123–129. doi:10.1016/j.foodchem.2014.12.051 Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossia AM (2014) Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem 159:250–256. doi:10.1016/j.foodchem.2014.03.013 Liao CW, Chen YR, Chang JL, Zen JM (2011) Single-run electrochemical determination of melamine in dairy products and pet foods. J Agric Food Chem 59(18):9782–9787. doi:10.1021/jf201989f