Determination of limit cycles for a modified van der Pol oscillator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bogarcz, 1997, Dry friction self-excited vibrations, analysis and experiment, Eng. Trans., 45, 197
Colin, 1999, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12, 1099, 10.1088/0951-7715/12/4/321
D’Acunto, 2001, A Simple Model for Low Friction Systems, vol. 311
den Hartog, 1984
Depasier, 2001, Variational approach to a class of nonlinear oscillators with several limit cycles, Phys. Rev. E, 64, 05617-1-6, 10.1103/PhysRevE.64.056217
Drăgănescu, 2004, Nonlinear relaxation phenomena in polycrystalline solids, Int. J. Nonlinear Sci. Numer. Simul., 4, 219, 10.1515/IJNSNS.2003.4.3.219
Hao, 2003, Application of the Lagrange multiplier method the semi-inverse method to the search for generalised variational principle in quantum mechanics, Int. J. Nonlinear Sci. Numer. Simul., 4, 311, 10.1515/IJNSNS.2003.4.3.311
He, 1999, Variational iteration method—a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech., 34, 699, 10.1016/S0020-7462(98)00048-1
He, 2000, A classical variational model for micropolar elastodynamics, Int. J. Nonlinear Sci. Numer. Simul., 1, 133, 10.1515/IJNSNS.2000.1.2.133
He, 2000, A Review on some new recently developed nonlinear analytical techniques, Int. J. Nonlinear Sci. Numer. Simul., 1, 51, 10.1515/IJNSNS.2000.1.1.51
He, 2000, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115, 10.1016/S0096-3003(99)00104-6
He, 2002, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun., 29, 107, 10.1016/S0093-6413(02)00237-9
He, 2003, Determination of limit cycles for strongly nonlinear oscillators, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.174301
Jackson, 1989
Liu, 2004, Variational approach to nonlinear electrochemical system, Int. J. Nonlinear Sci. Numer. Simul., 5, 95, 10.1515/IJNSNS.2004.5.1.95
Marinca, 2002, An approximate solution for x–c weakly nonlinear oscillations, Int. J. Nonlinear Sci. Numer. Simul., 3, 107, 10.1515/IJNSNS.2002.3.2.107
Nayfeh, 1979