Determination of groundwater flow regimes based on the spatial non-local distribution of hydraulic gradient: Model and validation

Xiuxuan Wang1, Jiazhong Qian2, Lei Ma2, Qi Luo2, Guan-Qun Zhou2
1Hefei University of Technology
2School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

de Graaf I. E. M., Gleeson T., van Beek L. P. H. R. et al. Environmental flow limits to global groundwater pumping [J]. Nature, 2019, 574(7776): 90–94.

Bear J. Dynamics of fluids in porous media [M]. New York, USA: Elsevier, 1972.

Soni J. P., Islam N., Basak P. An experimental evaluation of non-Darcian flow in porous media [J]. Journal of Hydrology, 1978, 38(3–4): 231–241.

Zimmerman R. W., Al-Yaarubi A., Pain C. C. et al. Nonlinear regimes of fluid flow in rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 164–169.

Cardenas M. B., Slottke D. T., Ketcham R. A. et al. Effects of inertia and directionality on flow and transport in a rough asymmetric fracture [J]. Journal of Geophysical Research, 2009, 114(B6): B06204.

Quinn P. M., Cherry J. A., Parker B. L. Relationship between the critical Reynolds number and aperture for flow through single fractures: Evidence from published laboratory studies [J]. Journal of Hydrology, 2019, 581: 124384.

Hölting B., Coldewey W. G. Hydrogeology [M]. Berlin, Germany: Springer, 2019.

Darcy H. Les fontaines publiques de la ville de Dijon [M]. Paris, France: Victor Dalmont, 1856.

Hubbert M. K. Darcy’s law and the field equations of the flow of underground fluids [J]. International Association of Scientific Hydrology, 1957, 2(1): 23–59.

Jr. Fetter C. W. Applied hydrogeology [M]. Fourth edition, London, UK: Pearson, 2014.

Reynolds O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels [J]. Proceedings of the Royal Society of London, 1883, 35(224–226): 84–99.

Chaudhary K., Cardenas M. B., Den W. et al. Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters [J]. Water Resources Research, 2013, 49(2): 1149–1162.

Dejam M., Hassanzadeh, H., Chen Z. Pre-Darcy flow in porous media [J]. Water Resources Research, 2017, 53(10): 8187–8210.

Luo Q., Yang Y., Qian J. et al. Spring protection and sustainable management of groundwater resources in a spring field [J]. Journal of Hydrology, 2020, 582: 124498.

Qian J., Zhan H., Chen Z. et al. Experimental study of solute transport under non-Darcian flow in a single fracture [J]. Journal of Hydrology, 2011, 399(3–4): 246–254.

Sedghi-Asl M., Ansari I. Adoption of extended Dupuit-Fichheimer assumptions to non-Darcy flow problems [J]. Transport in Porous Media, 2016, 113(3): 457–469.

Siddiqui F., Soliman M. Y., House W. et al. Pre-darcy flow revisited under experimental investigation [J]. Journal of Analytical Science and Technology, 2016, 7: 2.

Zhou J. Q., Li C., Wang L. et al. Effect of slippery boundary on solute transport in rough walled rock fractures under different flow regimes [J]. Journal of Hydrology, 2021, 598: 126456.

Zeng Z., Grigg R. A criterion for non-Darcy flow in porous media [J]. Transport In Porous Media, 2006, 63(1): 57–69.

Javadi M., Sharifzadeh M., Shahriar K. et al. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes [J]. Water Resources Research, 2014, 50(2): 1789–1804.

Zhou J. Q., Hu S. H., Fang S. et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 202–218.

Wheatcraft S. W., Meerschaert M. M. Fractional conservation of mass [J]. Advances in Water Resources, 2008, 31(10): 1377–1381.

Moutsopoulos K. N., Papaspyros I. N. E., Tsihrintzis V. A. Experimental investigation of inertial flow processes in porous media [J]. Journal of Hydrology, 2009, 374(3–4): 242–254.

Edelen D. G. B. Nonlocal field theories (Eringen A. C. Continuum physics) [M]. New York, USA: Academic Press, 1976, 75–204.

Zhang Y., Benson D. A., Reeves D. M. Time and space nonlocalities underlying fractional derivative models: Distinction and literature review of applications [J]. Advances in Water Resources, 2009, 32(4): 561–581.

Mueller E. V., Gallagher M. R., Skowronski N. et al. Approaches to modeling bed drag in pine forest litter for wildland fire applications [J]. Transport In Porous Media, 2021, 138: 637–660.

Qian J. Z., Chen Z., Zhan H. B. et al. Solute transport in a filled single fracture under non-Darcian flow [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 132–140.

Zhou J. Q., Chen Y., Wang L. et al. Universal relationship between viscous and inertial permeability of geologic porous media [J]. Journal of Geophysical Research, 2019, 46(3): 1441–1448.

Sivanesapillai R., Steeb H., Hartmaier A. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media [J]. Geophysical Research Letters, 2014, 41(14): 4920–4928.