Determination of formaldehyde release from wood-based panels using SPME-GC-FAIMS

Sarah Himmel1, Carsten Mai2, Achim Schumann3, Jörg Hasener4, Vera Steckel4, Christoph Lenth5
1Wood Technology and Wood-based Composites, Georg-August-Universität Göttingen, Göttingen, Germany
2Wood Biology and Wood Products, Georg-August-Universität Göttingen, Göttingen, Germany
3Schumann-Analytics, Einbeck, Germany
4Fagus-GreCon Greten GmbH & Co KG, Alfeld, Germany
5Laser-Laboratorium Göttingen e.V., Göttingen, Germany

Tóm tắt

Several standardized methods exist to determine formaldehyde (HCHO) release from wood-based panels (WBPs). These methods were developed decades ago to be used in manufacturers laboratories to provide a mean of production control. They are robust and take several hours to yield results. Modern WBP panel production, however, is a continuous process. Therefore the established methods are too time-consuming for process control and process optimization with respect to HCHO release. Moreover, there is a strong trend of lowering the regulatory HCHO emission limits. Thus, there is a need for a comparatively fast and precise method which is suitable for the use on-site in a WBP manufacturers laboratory. In this work, an optimization of the solid phase micro extraction gas chromatography high field asymmetric waveform ion mobility spectrometry (SPME-GC-FAIMS) method is presented with respect to GC-FAIMS settings and the calibration procedure. It is also shown that, in addition to WBP block samples, also particles can be used for the measurement. The industrial applicability of SPME-GC-FAIMS system was demonstrated by testing the HCHO release of freshly produced WBPs on-site in the manufacturers laboratory.

Tài liệu tham khảo

Andre N, Young TM, Rials TG (2009) Spectroscopic prediction of formaldehyde emission and thickness swell of wood panel. Patent. US 2009/0230306 A1, USA Anonymus (1989) Indoor air quality - Report on an WHO meeting. EURO Reports and Studies. World Health Organization - Regional Office for Europe, Kopenhagen. p. 70 ATCM (2008) §93120 AIRBORNE TOXIC CONTROL MEASURE to reduce formaldehyde emissions from composite wood products [17 Cal. Code Regs. sections 93120–93120.12]. California Environmental Protection Agency Air Resources Board, Sacramento ChemVerbots V (2003) Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz. Chemikalien-Verbotsverordnung in der Fassung der Bekanntmachung vom 13. Juni 2003 (BGBl. I S. 867), die zuletzt durch Artikel 5 Absatz 40 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist Dunky M (1999) in Dunky M, Niemz P (2002) Holzwerkstoffe und Leime: Technologie und Einflussfaktoren. Springer Verlag, Berlin Heidelberg New York Eiceman GA, Tarassov A, Funk PA, Hughs SE, Nazarov EG, Miller RA (2003) Discrimination of combustion fuel sources using gas chromatography-planar field asymmetric-waveform ion mobility spectrometry. J Sep Sci 26(6–7):585–593 EN 120 (1992) Wood-based panels; Determination of formaldehyde content; Extraction method called the perforator method. European Committee for Standardisation, Brussels, Belgium EN 13986 (2005) Wood-based panels for use in construction-Characteristics, evaluation of conformity and marking. European Committee for Standardisation, Brussels, Belgium EN 312 (2010) Wood-based panels; Particleboards - Specifications. European Committee for Standardisation, Brussels, Belgium EN 717–1 (2004) Wood-based panels - Determination of formaldehyde release - Part 1: Formaldehyde emission by the chamber method. European Committee for Standardisation, Brussels, Belgium EN 717–2 (1994) Wood-based panels - Determination of formaldehyde release - Part 2: Formaldehyde release by the gas analysis method. European Committee for Standardisation, Brussels, Belgium Engström B (2008) Evaluation of formaldehyde emission from low emission composite board. Paper presented at the 3.Fachtagung Holztechologie, Göttingen, Germany Engström B, Hedqvist M (1999) Prediction of the properties of board by using a spectroscopic method combined with multivariate calibration. Patent, US005965888A, USA Hasener J (2011) Formaldehyd-Gasanalyse nach EN 717–2. Holz Zentralblatt 6:170 JIS A 5908 (2003) Particleboards; Japanese Industrial Standard. Japanese Industrial Standards Committee, Tokyo, Japan Kim S (2010) Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing. J Hazard Mater 176(1–3):14–19 Lawrence AH, Barbour RJ, Sutcliffe R (1991) Identification of wood species by ion mobility spectrometry. Anal Chem 63(13):1217–1221 Leonhardt JW, Rohrbeck W, Bensch H (2000) A high resolution IMS for environmental studies. Int J Ion Mobil Spectrom 3(1):43–49 Limero T, Reese E, Cheng P, Trowbridge J (2011) Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. Int J Ion Mobil Spectrom 14(2–3):81–91 Mantau U (2012) Standorte der Holzwirtschaft, Holzrohstoffmonitoring, Holzwerkstoffindustrie-Kapazitätsentwicklung und Holzrohstoffnutzung im Jahr 2010. Universität Hamburg, Zentrum Holzwirtschaft. Arbeitsbereich Ökonomie der Holz- und Forstwirtschaft. Hamburg Martos PA, Pawliszyn J (1998) Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization. Anal Chem 70(11):2311–2320 Marutzky R (1989) Possibility of diminishing the indoors formaldehyde content. Holz Roh Werkst 47(5):207–211 Marutzky R, Flentge A, Boehme C (1992) Formaldehyde emission of MDF in dependence of density profile. Holz Roh Werkst 50(6):239–240 Marutzky R, Mehlhorn L, Menzel W (1981) Reducing the formaldehyde emission from furniture. Holz Roh Werkst 39(1):7–10 Mauruschat D, Schumann A, Meinlschmidt P, Gunschera J, Salthammer T (2014) Application of Gas chromatography – field asymmetric Ion mobility spectrometry (GC-FAIMS) for the detection of organic preservatives in wood. Int J Ion Mobil Spectrom 17:1–9 Meyer B, Boehme C (1995) Massivholz und Formaldehyd. Eur J Wood Wood Prod 53(1):135–135 Miller RA, Nazarov E, Coy SL, Krylov E (2006) Miniature differential mobility spectrometer as an a pre-filter for atmospheric-pressure mass spectrometry. Int J Ion Mobil Spectrom 9(1):35–39 Nasch T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421 Perr JM, Furton KG, Almirall JR (2005) Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. J Sep Sci 28(2):177–183 Risholm-Sundman M, Larsen A, Vestin E, Weibull A (2007) Formaldehyde emission - comparison of different standard methods. Atmos Environ 41(15):3193–3202 Roffael E (1982) Die Formaldehydabgabe von Spanplatten und anderen Werkstoffen. DRW-Verlag Weinberger-KG, Leinfelden-Echterdingen Schäfer M, Roffael E (2000) On the formaldehyde release of wood. Eur J Wood Wood Prod 58(4):259–264 Schumann A, Lenth C, Hasener J, Steckel V (2012) Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS). Int J Ion Mobil Spectrom 15(3):157–168 Telgheder U, Malinowski M, Jochmann M (2009) Determination of volatile organic compounds by solid-phase microextraction - gas chromatography-differential mobility spectrometry. Int J Ion Mobil Spectrom 12(4):123–130 Weigl M, Wimmer R, Sykacek E, Steinwender M (2009) Wood-borne formaldehyde varying with species, wood grade, and cambial age. For Prod J 59(1–2):88–92 Zscheppank C, Telgheder U, Molt K (2012) Stir-bar sorptive extraction and TDS-IMS for the detection of pesticides in aqueous samples. Int J Ion Mobil Spectrom 15:257–264