Xác định điểm bão hòa sợi của cây mây (Calamus simplicifolius) bằng phương pháp LF-NMR và hai phương pháp truyền thống

Wood Science and Technology - Tập 54 - Trang 667-682 - 2020
Limei Yang1, Genlin Tian1, Shumin Yang1, Lili Shang1, Xing’e Liu1, Zehui Jiang1
1Department of Biomaterials, International Center for Bamboo and Rattan, Beijing, China

Tóm tắt

Nước tồn tại trong các vật liệu lignocellulosic trong suốt quá trình từ sự phát triển của cây cho đến việc chế biến và sử dụng nguyên liệu thô. Điểm bão hòa sợi (FSP) là điểm uốn của các thuộc tính vật lý và cơ học của các vật liệu lignocellulosic và có ảnh hưởng quan trọng đến các thuộc tính vật lý và cơ học của chúng. Bài báo này khảo sát FSP của Calamus simplicifolius bằng phương pháp cộng hưởng từ hạt nhân tĩnh trường thấp (LF-NMR) và hai phương pháp truyền thống bao gồm phương pháp dung dịch muối bão hòa và phương pháp hấp thụ hơi động (DVS). Giá trị FSP trung bình được xác định bằng phương pháp LF-NMR, phương pháp dung dịch muối bão hòa và phương pháp DVS lần lượt là 38,15%, 32,54% và 28,96%. Nghiên cứu cho thấy rằng các giá trị FSP xác định bằng phương pháp LF-NMR cao hơn so với các giá trị xác định bằng hai phương pháp truyền thống. Hai phương pháp truyền thống là đơn giản và hiệu quả về chi phí, có khả năng đo trực tiếp xem các thuộc tính của cây mây có biến đổi theo độ ẩm hay không. Từ quan điểm nhiệt động học, ngay cả trong giới hạn dung dịch lý tưởng, nước tự do hiện diện ở độ ẩm tương đối (RH) dưới 100%. Do đó, việc ngoại suy đến 100% RH là không hoàn toàn chính xác. Lượng nước trong cây mây ở các trạng thái khác nhau có thể được định lượng bằng phương pháp LF-NMR, và giá trị FSP được xác định bằng tỷ lệ của các phép đo trên và dưới điểm nóng chảy của nước. Hơn nữa, phương pháp LF-NMR nhanh hơn và không phá hủy so với hai phương pháp truyền thống.

Từ khóa

#Điểm bão hòa sợi #Calamus simplicifolius #LF-NMR #vật liệu lignocellulosic #phương pháp hút ẩm động

Tài liệu tham khảo

Aksnes DW, Kimtys L (2004) IH and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution. Solid State Nucl Magn Reson 25:146–152. https://doi.org/10.1016/j.ssnmr.2003.03.001 Babiak M, Kúdela J (1995) A contribution to the definition of the fiber saturation point. Wood Sci Technol 29:217–226. https://doi.org/10.1007/BF00204589 Bhat KM (1991) Mohan verghese anatomical basis for density and shrinkage behavior of rattan stem. J Inst Wood Sci 12:123–130 Brownstein KR, Tarr CE (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys Rev A 19:2446–2453. https://doi.org/10.1103/PhysRevA.19.2446 Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. https://doi.org/10.1021/ja01864a025 Cao JZ, Zhao GJ (2001) Dielectric relaxation of adsorbed water in wood cell wall under equilibrium and non-equilibrium state. For Ecosyst 3:71–77 (in Chinese) Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161 Esteban LG, de Palacios P, Fernández FG, Martín JA, Génova M, Fernández-Golfín JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43:679–690. https://doi.org/10.1007/s00226-009-0261-6 Esteban LG, Simón C, Fernández FG, de Palacios P, Martín-Sampedro R, Eugenio ME, Hosseinpourpia R (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci Technol 49:725–738. https://doi.org/10.1007/s00226-015-0730-z Gao X, Zhuang SZ (2015) Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cytophotometry. Chin J Magn Reson 32:670–677 (in Chinese) Gao X, Cai JB, Jin JW, Zhuang SZ (2017) Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cryoporometry. J Nanjing For Univ Nat Sci Ed 41:150–155 (in Chinese) Glass SV, Boardman CR, Zelinka SL (2017) Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Sci Technol 51(2):243–260 Glass SV, Boardman CR, Thybring EE, Zelinka SL (2018) Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Sci Technol 52(4):909–927. https://doi.org/10.1007/s00226-018-1007-0 Hartley ID, Kamke FA, Peemoeller H (1992) Cluster theory for water sorption in wood. Wood Sci Technol 26:83–99. https://doi.org/10.1007/BF00194465 Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester. https://doi.org/10.1002/0470021748.ch5 Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. https://doi.org/10.1002/app.29725 Hill CAS, Ramsay J, Keating BK, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapor sorption properties of thermally modified and densified wood. J Mater Sci 47:3191–3197. https://doi.org/10.1007/s10853-011-6154-8 Hosseinpourpia R, Adamopoulos S, Holstein N, Mai C (2017) Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris, L.) wood pre-treated with proton acid. Polym Degrad Stab 138:161–168. https://doi.org/10.1016/j.polymdegradstab.2017.03.009 Huang YK, Wang XM (2014) Wood hygroscopic mechanism and its application. World For Res 27:35–40 (in Chinese) Jalaludin Z, Hill CAS, Samsi HW, Husain H, Xie Y (2010) Analysis of water vapor sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood–Horrobin model. Holzforschung 64:763–770. https://doi.org/10.1515/hf.2010.100 James WL (1988) Electric moisture meters for wood. Forest Products Laboratory General Technical Report FPL-GTR-6. US Forest Service Forest Products Laboratory, Madison Jia CH, Hong H, Yu YS, Zhou Wei H (2016) Comparative research on physicochemical properties of the parenchymal tissue and vascular bundle in bamboo. J Cent South Univ For Technol 36:116–122 (in Chinese) Kekkonen PM, Ylisassi A, Telkki VV (2014) Absorption of water in thermally modified pine wood as studied by nuclear magnetic resonance. J Phys Chem C 118:2146–2153. https://doi.org/10.1021/jp411199r Liu YX, Zhao GJ (2004) Wood resource materials science. China Forestry Publishing House, Beijing (in Chinese) Liu XE, Lv WH, Zheng XY (2014) Influence of moisture content on the bending properties of rattan cane. J Anhui Agric Univ 41:934–938 (in Chinese) Luo ZF, Pan B, Wang YB, Zhang XF, Yan XH (2013) Research on rattan form and anatomy characteristics of C. simplicifolius. J Anhui Agric Univ 39:365–370 (in Chinese) Menon RS, Mackay AL, Flibotte SG, Hailey JRT (1989) Quantitative separation of NMR images of water in wood on the basis of T2. J Magn Reson 82:205–210 Moreira R, Chenlo F, Vazquez MJ, Camean P (2005) Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K. J Food Eng 71:193–199. https://doi.org/10.1016/j.jfoodeng.2004.10.033 Park S, Venditti R, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohyd Polym 66:97–103. https://doi.org/10.1016/j.carbpol.2006.02.026 Passarini L, Malveau C, Hernández RE (2015) Distribution of the equilibrium moisture content in four hardwoods below fiber saturation point with magnetic resonance micro imaging. Wood Sci Technol 49:1251–1268. https://doi.org/10.1007/s00226-015-0751-7 Passarini L, Zelinka SL, Glass SV, Hunt CG (2017) Effect of weight percent gain and experimental method on fiber saturation point of acetylated wood determined by differential scanning calorimetry. Wood Sci Technol 51:1291–1305. https://doi.org/10.1007/s00226-017-0963-0 Popescu CM, Hill CAS (2013) The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym Degrad Stab 98:1804–1813. https://doi.org/10.1016/j.polymdegradstab.2013.05.021 Popescu C, Hill CAS, Curling S, Ormondroyd G, Xie YJ (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49:2362–2371. https://doi.org/10.1007/s10853-013-7937-x Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356. https://doi.org/10.1007/s10853-013-7434-2 Riggin MT, Sharp AR, Kaiser R (1979) Transverse NMR relaxation of water in wood. J Appl Polym Sci 23:3147–3154. https://doi.org/10.1002/app.1979.070231101 Ross RJ (2010) Wood handbook: wood as an engineering material. Centennial Edition. United State Department of Agriculture Forest Service, Madison, Wisconsin. https://doi.org/10.15173/sj.v1i1.167 Shang LL (2014) The research on fundamental properties and toughening modification of Plectocomia kerana. Chinese Academy of Forestry (in Chinese) Siau JF (1995) Wood: influence of moisture on physical properties. Department of wood Science Forest Products, Virginia Polytechnic Institute and State University Blacksburg, Virginia Skaar C (1988) Wood–water relations. Springer, Berlin. https://doi.org/10.1007/978-3-642-73683-4 Song LL, Gao X, Wang XZ, Ren HQ, Chen B, Xu B (2017) Determination of fiber saturation point of bamboo using LF-NMR. J For Eng 2:36–40 (in Chinese) Stamm AJ (1929) The fiber-saturation point of wood as obtained from electrical conductivity measurements. Ind Eng Chem Anal Ed 1:94–97. https://doi.org/10.1021/ac50066a021 Stamm AJ (1971) Review of nine methods for determining the fiber saturation points of wood and wood products. Wood Sci 4:114–128 Telkki VV, Yliniemi M, Jokisaari J (2013) Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 67:291–300. https://doi.org/10.1515/hf-2012-0057 Tiemann HD (1906) Effect of moisture upon the strength and stiffness of wood. US Department of Agriculture, Forest Service-Bulletin 70, Government Printing Office, Washington, DC Tremblay C, Cloutier A, Fortin Y (1996) Moisture content–water potential relationship of red pine sapwood above the fiber saturation point and determination of the effective pore size distribution. Wood Sci Technol 30:361–371. https://doi.org/10.1007/BF00223556 Walker JCF (2006) Primary wood processing principles and practice, 2nd edn. University of Canterbury/Springer, Christchurch. https://doi.org/10.1007/1-4020-4393-7 Wang HK, Yu YS, Yu Y, Sun FB (2010) Variation of the fiber saturation point of bamboo with age. J Cent South Univ For Technol 30:112–115 (in Chinese) Wu YZ (2007) Chemical composition of three kinds of rattan canes. Scientia Silvae Sinicae 43:155–158 (in Chinese) Xie Y, Hill CAS, Xiao Z, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682. https://doi.org/10.1002/app.32054 Xie Y, Hill CAS, Jalaludin Z, Sun DY (2011a) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530. https://doi.org/10.1007/s10570-011-9512-4 Xie Y, Hill CAS, Xiao Z, Mai C, Militz H (2011b) Dynamic water vapor sorption properties of wood treated with glutaraldehyde. Wood Sci Technol 45:49–61. https://doi.org/10.1007/s00226-010-0311-0 Xie Y, Fu Q, Wang Q, Xiao ZF, Militz H (2013) Effects of chemical modification on the mechanical properties of wood. Eur J Wood Prod 71:401–416. https://doi.org/10.1007/s00107-013-0693-4 Zauer M, Kretzschmar J, Großmann L, Pfriem A, Wagenführ A (2014) Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry. Wood Sci Technol 48:177–193. https://doi.org/10.1007/s00226-013-0597-9 Zelinka SL, Glass SV, Jakes JE, Stone DS (2016) A solution thermodynamics definition of the fiber saturation point and the derivation of a wood–water phase (state) diagram. Wood Sci Technol 50:443–462. https://doi.org/10.1007/s00226-015-0788-7 Zhang X, Li J, Yu Y, Wang HK (2018) Investigating the water vapor sorption behavior of bamboo with two sorption models. J Mater Sci 53:8241–8249. https://doi.org/10.1007/s10853-018-2166-y