Determination of Manganese in Natural Media by Anodic Stripping Voltammetry Using a Rotating Solid Silver Amalgam Electrode

Electroanalysis - Tập 21 Số 3-5 - Trang 274-279 - 2009
Ludovic Lesven1, Silje M. Skogvold2, Øyvind Mikkelsen2, Gabriel Billon1
1University of Lille 1 (USTL), Laboratory Geosystems (UMR-CNRS 8157), BP59655, Villeneuve d'Ascq, France
2Norwegian University of Science and Technology, Department of Chemistry, N‐7491 Trondheim, Norway

Tóm tắt

Abstract

Detection of Mn(II) using differential pulse anodic stripping voltammetry (DPASV) on solid silver amalgam electrode is introduced. A well‐defined peak for the oxidation of Mn(0) to Mn(II) was observed around −1.45 V in NH4Cl (0.05 M) solution. Concentrations down to 1 μg/L were measured in NH4Cl (0.05 M) with 900 s deposition time at −1.70 V, and good linearity was observed (r=0.993) for standard additions in different concentration ranges (1–3 μg/L, 10 μg/L–60 μg/L, and 50 μg/L–250 μg/L). For all measurements relative standard deviation was within 5% (n=9). Interactions between Mn and Cd, Ni, Cu, Pb and Zn were examined, and it was found that lead and nickel significantly interfere, while zinc, cadmium, copper, and mercury did not interfere within reasonable concentration ranges. The method was demonstrated for online detection of manganese in a contaminated river where the Mn(II) concentration varied between 3 and 15 μg/L. The relation between the Mn(II) concentration in the river water and the vessel traffic was observed due to the presence of high concentrations of Mn(II) in anoxic pore waters.

Từ khóa


Tài liệu tham khảo

10.5414/TEP21068

10.1212/WNL.17.2.128

Sawyer C. N., 1994, Chemistry for Environmental Engineering

10.1016/0016-7037(79)90095-4

10.1016/j.marchem.2007.06.001

10.1016/0039-9140(86)80156-4

10.1016/j.marchem.2007.05.007

10.1016/0016-7037(95)00038-2

10.1016/S0003-2670(01)00856-X

10.1021/ac00046a006

10.1039/an9861100489

10.1016/S0003-2670(01)82156-5

10.1016/S0003-2670(01)95451-0

10.1016/0022-0728(89)85119-8

10.1016/0039-9140(83)80211-2

10.1080/03067319108026987

10.1016/S0003-2670(00)82445-9

10.1016/0039-9140(95)01396-S

Duwensee H., 2007, Int. J. Electrochem. Sci., 2, 498, 10.1016/S1452-3981(23)17090-8

10.1016/S0003-2670(98)00300-6

Cai Q., 1992, Gaodeng Xuexiao Huaxue Xuebao, 13, 42

An J., 1990, Fenxi Huaxue, 18, 1162

10.1002/(SICI)1521-4109(200005)12:8<610::AID-ELAN610>3.0.CO;2-K

10.1007/BF01242457

10.1016/S0039-9140(03)00062-6

10.1016/S0003-2670(97)00041-X

Brainina K., 1964, Zh. Analitich. Khimii, 19, 810

10.1135/cccc19821216

Lee J., 2004, J. Electrochem. Soc., 151

10.1016/j.electacta.2007.06.008

Surmann J. P., 1996, Fresenius' J. Anal. Chem, 354, 296, 10.1007/s0021663540296

10.1039/b008473p

10.1080/00032719.2000.10399499

10.1002/elan.200703918

10.1080/10408340290765498

10.1002/elan.200290018

10.1002/elan.200390085

10.1135/cccc20010465

10.1007/s00216-003-2102-z

10.1007/s00216-006-0334-4

10.1002/elan.200503328

Ø.Mikkelsen K. H.Schroder International Patent WO/2001/080328(2000 PCT/NO00/00124).

10.1002/elan.200403177

10.1002/elan.200703913

Bard A. J., 1985, Standard Potentials in Aqueous Solution

10.1016/S0003-2670(02)00489-0

10.1016/S0003-2670(02)00016-8

10.1016/0048-9697(95)04519-7

10.1016/0198-0149(79)90101-8

10.1002/elan.200703877

Komorsky‐Lovrić Š., 1998, Croat. Chem. Acta, 71, 263