Determination of Manganese by Cathodic Stripping Voltammetry on a Microfabricated Platinum Thin–film Electrode

Electroanalysis - Tập 29 Số 3 - Trang 686-695 - 2017
Wenjing Kang1, Cory A. Rusinek2, Adam Bange3, Erin N. Haynes4, William R. Heineman2, Ian Papautsky5
1Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, 45221-0030
2Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172
3Department of Chemistry, Xavier University, Cincinnati, OH, 45207-4221
4Department of Environmental Health, University of Cincinnati, Cincinnati, OH, 45267-0056
5Department of Bioengineering, University of Illinois at Chicago, 851 S Morgan St, SEO 218, Chicago, IL, 60607

Tóm tắt

Abstract

In this work, we report on the determination of trace manganese (Mn) using cathodic stripping voltammetry (CSV) using a microfabricated sensor with a Pt thin‐film working electrode. While an essential trace metal for human health, prolonged exposure to Mn tends to gradually impair our neurological system. The potential sources of Mn exposure make it necessary to monitor the concentration in various sample matrices. Previous work by us and others suggested CSV as an effective method for measuring trace Mn. The analytical performance metrics were characterized and optimized, leading to a calculated limit of detection (LOD) of 16.3 nM (0.9 ppb) in pH 5.5, 0.2 M acetate buffer. Further, we successfully validated Mn determination in surface water with ∼90% accuracy and >97% precision as compared with inductively coupled plasma mass spectrometry (ICP‐MS) “gold standard” measurement. Ultimately, with stable, accurate and precise electrochemical performance, this Pt sensor permits rapid monitoring of Mn in environmental samples, and could potentially be used for point‐of‐use measurements if coupled with portable instrumentation.

Từ khóa


Tài liệu tham khảo

10.1016/S0892-0362(00)00108-2

Wasserman G. A., 2006, Environ. Health Perspect., 124, 10.1289/ehp.8030

10.1097/JOM.0b013e3181896936

10.1097/EDE.0b013e3181df8e52

10.1016/j.neuro.2009.10.011

10.1016/j.scitotenv.2012.03.037

10.1006/taap.2001.9245

10.1002/nbm.931

(WHO) World Health Organization, 2011, Guidelines for drinking-water quality

Williams M., 2012, Toxicological Profile for Manganese

10.1385/BTER:78:1-3:271

10.1039/b108225f

10.1080/15287391003744807

10.1016/0009-2541(90)90145-W

10.1039/A700904F

Heineman W., 1989, Chemical Instrumentation: A Systematic Approach Third Edition,, 1137

Kissinger P. T., 1996, Laboratory Techniques in Electroanalytical Chemistry

10.1002/0471790303

Kounaves S. P., 1997, Handbook of instrumental techniques for analytical chemistry,, 709

10.1002/elan.201200530

10.1016/S0022-0728(01)00422-3

10.1016/0039-9140(95)01396-S

Chen L., 2010, Yejin Fenxi., 30, 27

10.1016/j.talanta.2004.06.038

10.1039/a906851a

10.1016/S0039-9140(03)00062-6

10.1016/S0039-9140(03)00327-8

Rievaj M., 2008, Chem. Anal. (Warsaw)., 53, 153

10.1007/s10008-013-2204-2

10.1016/j.microc.2014.05.005

10.1002/elan.201200302

10.1002/elan.201500474

10.1002/elan.201300415

10.1016/j.talanta.2013.04.057

10.1016/j.snb.2013.07.104

10.1021/ac500277j

X. Pei W. Kang W. Yue A. Bange W. Heineman I. Papautsky 2013 246–249.

10.1007/s10544-011-9539-1

10.1021/ac502882s

10.1149/1.2426148

10.1149/1.2220750

10.1002/elan.201300349

10.1149/2.022402jes

10.1021/acs.analchem.5b03381

10.1016/0022-0728(89)85119-8

10.1016/S0022-0728(77)80402-6

10.1016/S0022-0728(80)80372-X

10.1016/0013-4686(90)85071-T

10.1016/S0013-4686(00)00597-1

10.1016/j.trac.2004.11.014

10.1002/elan.200302986

Hem J. D., 1985, Study and Interpretation of the Chemical Characteristics of Natural Water (U. S. Geological Survey, Water Supply Paper 2254),, 76