Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố quyết định enzyme phân giải carbon và nitrogen trong đất trong các vùng trồng rừng khác nhau ở Trung Quốc
Tóm tắt
Phân hủy chất hữu cơ trong đất (SOM) được điều chỉnh bởi một tập hợp phức tạp các enzyme. Tuy nhiên, những ảnh hưởng của các yếu tố sinh học và phi sinh học đối với sự biến thiên không gian của hoạt động enzyme trong đất (EA) trong các hệ sinh thái vẫn chưa được giải quyết. Ở đây, chúng tôi đã đo EA tại các vị trí khác nhau trong hai vùng đất trồng rừng (rừng thông và đất cây bụi họ đậu), đồng thời thu thập dữ liệu về tính chất lý hóa của đất, các yếu tố liên quan đến thực vật và vi sinh vật nhằm xác định các yếu tố quyết định các mẫu không gian của EA. Kết quả cho thấy rằng hàm lượng carbon hữu cơ trong đất và tổng nitơ là các yếu tố phi sinh học chính thúc đẩy EA tuyệt đối (EA trên đơn vị trọng lượng đất khô) trong cả hai vùng đất trồng rừng, trong khi độ pH của đất là yếu tố chính trong việc điều chỉnh EA đặc hiệu (EA trên đơn vị khối lượng vi sinh vật). Tuy nhiên, các yếu tố sinh học chính khác nhau theo loại trồng rừng: khối lượng rễ và khối lượng vi sinh vật là những yếu tố quyết định EA trong vùng cây bụi, trong khi phân bố cây, lá mục và khối lượng rễ, và khối lượng vi khuẩn là những yếu tố quyết định trong rừng. Các yếu tố liên quan đến thực vật (tức là, lá mục và khối lượng rễ) ảnh hưởng gián tiếp đến EA của đất bằng cách điều chỉnh các yếu tố phi sinh học của đất. So với khối lượng vi sinh vật, thành phần cộng đồng vi sinh vật có ảnh hưởng nhỏ đến EA. Sự biến thiên của EA đặc hiệu (EA trên đơn vị khối lượng vi sinh vật hoặc SOM) được giải thích bởi các yếu tố đã chọn thấp hơn nhiều so với EA tuyệt đối. Ngoài ra, tỷ lệ enzym C/N trong các hệ sinh thái không theo một mẫu chung (1:1) được quan sát ở quy mô toàn cầu. Kết quả của chúng tôi cung cấp cái nhìn thử nghiệm mới về sự biến thiên không gian của chu trình C và N ở cấp độ hệ sinh thái qua các enzyme, gợi ý rằng các yếu tố phi sinh học của đất đáng tin cậy hơn so với các yếu tố sinh học trong việc phản ánh các mẫu không gian của EA trong các hệ thống trồng rừng.
Từ khóa
#SOM #enzyme #hoạt động enzyme trong đất #biến thiên không gian #chất hữu cơ trong đấtTài liệu tham khảo
Allison S, Weintraub M, Gartner T, Waldrop M (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil Enzymology. Springer, Berlin Heidelberg, Berlin, Germany, pp 229–243
Baldrian P (2014) Distribution of extracellular enzymes in soils: spatial heterogeneity and determining factors at various scales. Soil Sci Soc Am J 78:11–18. https://doi.org/10.2136/sssaj2013.04.0155dgs
Baldrian P, Šnajdr J (2011) Lignocellulose-hydrolyzing enzymes in soils. In: Shukla G, Varma A (eds) Soil enzymology. Springer-Verlag, Berlin, Germany, pp 167–186
Banerjee S, Bora S, Thrall PH, Richardson AE (2016) Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Appl Soil Ecol 105:1–8. https://doi.org/10.1016/j.apsoil.2016.04.002
Boeddinghaus RS, Nunan N, Berner D, Marhan S, Kandeler E (2015) Do general spatial relationships for microbial biomass and soil enzyme activities exist in temperate grassland soils? Soil Biol Biochem 88:430–440. https://doi.org/10.1016/j.soilbio.2015.05.026
Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 143:1045–1055. https://doi.org/10.2307/1940179
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York
Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. https://doi.org/10.1007/s002489900082
Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262. https://doi.org/10.1016/j.soilbio.2013.10.004
Brzezińska M, Lipiec J, Frąc M, Oszust K, Szarlip P, Turski M (2018) Quantitative interactions between total and specific enzyme activities and C and N contents in earthworm-affected pear orchard soil. Land Degrad Dev 29:3379–3389. https://doi.org/10.1002/ldr.3100
Brzostek ER, Greco A, Drake JE, Finzi AC (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115:65–76. https://doi.org/10.1007/s10533-012-9818-9
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
Cheng X, Yang Y, Li M, Dou X, Zhang Q (2013) The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China. Plant Soil 366:415–424. https://doi.org/10.1007/s11104-012-1446-6
Dornbush ME (2007) Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biol Biochem 39:2241–2249. https://doi.org/10.1016/j.soilbio.2007.03.018
Feng C, Ma Y, Jin X, Wang Z, Ma Y, Fu S, Chen HY (2019) Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma 351:180–187. https://doi.org/10.1016/j.geoderma.2019.05.006
Frankenberger WT Jr, Johanson JB (1982) Effect of pH on enzyme stability in soils. Soil Biol Biochem 14:433–437. https://doi.org/10.1016/0038-0717(82)90101-8
Han J, Zhang C, Cheng J, Wang F, Qiu L (2019) Effects of biogas residues containing antibiotics on soil enzyme activity and lettuce growth. Environ Sci Pollut Res 26:6116–6122. https://doi.org/10.1007/s11356-018-4046-z
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858. https://doi.org/10.1111/j.1469-8137.2010.03321.x
Kivlin SN, Treseder KK (2014) Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry 117:23–37. https://doi.org/10.1007/s10533-013-9852-2
Kunungo PK, Panda D, Adhya TK, Ramakrishnan B, Rao VR (2015) Nitrogenase activity and nitrogen-fixing bacteria associated with rhizosphere of rice cultivars with varying N absorption efficiency. J Sci Food Agric 73:485–488. https://doi.org/10.1016/S0944-5013(11)80053-4
Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396
Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069
Li Q, Feng J, Wu J, Jia W, Zhang Q, Chen Q, Zhang D, Cheng X (2019) Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China. Soil and Tillage Research 193:8–16. https://doi.org/10.1016/j.still.2019.05.015
Li, S.Y., & Zhang, Q.F. (2008). Main eco-environmental problems and revegetation in the Danjiangkou Reservoir water supplying area of the middle route of the South to North water transfer project. China Rural Water and Hydropower, 3. (in Chinese)
Liao H, Sheng M, Liu J, Ai X, Li C, Ai S, Ai Y (2021). Soil N availability drives the shifts of enzyme activity and microbial phosphorus limitation in the artificial soil on cut slope in southwestern China. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13012-7
Looby CI, Treseder KK (2018) Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biol Biochem 117:87–96. https://doi.org/10.1016/j.soilbio.2017.11.014
Mao L, Tang D, Feng H, Gao Y, Zhou P, Xu L, Wang L (2015) Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination. Environ Sci Pollut Res 22:19860–19869. https://doi.org/10.1007/s11356-015-5220-1
Mayor ÁG, Goirán SB, Vallejo VR, Bautista S (2016) Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands. Sci Total Environ 573:1209–1216. https://doi.org/10.1016/j.scitotenv.2016.03.139
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter AA (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:22. https://doi.org/10.3389/fmicb.2014.00022
Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. https://doi.org/10.1007/s00374-012-0723-0
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, ÓHara RB, Simpson GL, Solymos P, Stevens MHM, Wagner HH (2013). Vegan: community ecology package. R. Package Version 2.0–7
Peng X, Wang W (2016) Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol Biochem 98:74–84. https://doi.org/10.1016/j.soilbio.2016.04.008
Raiesi F, Beheshti A (2014) Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl Soil Ecol 75:63–70. https://doi.org/10.1016/j.apsoil.2013.10.012
Regan KM, Nunan N, Boeddinghaus RS, Baumgartner V, Berner D, Boch S, Oelmann Y, Overmann J, Prati D, Schloter M, Schmitt B, Sorkau E, Steffens M, Kandeler E, Sven M (2014) Seasonal controls on grassland microbial biogeography: are they governed by plants, abiotic properties or both? Soil Biol Biochem 71:21–30. https://doi.org/10.1016/j.soilbio.2013.12.024
Saetre P, Bååth E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol Biochem 32:909–917. https://doi.org/10.1016/S0038-0717(99)00215-1
Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762. https://doi.org/10.1038/ismej.2012.11
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw CL, Contosta AR, Cusak D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop M, Wallenstein M, Dr Z, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798. https://doi.org/10.1038/nature08632
Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West P, Clark J, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, Mcdowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J, Pugh TAM (2016) Global change pressures on soils from land use and management. Glob Change Biol 22:1008–1028. https://doi.org/10.1111/gcb.13068
Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632. https://doi.org/10.2307/2413122
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246. https://doi.org/10.1111/nph.15361
Štursová M, Bárta J, Šantrůčková H, Baldrian P (2016). Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiology Ecology, 92, fiw185. https://doi.org/10.1093/femsec-fiw185
Wallenius K, Rita H, Mikkonen A, Lappi K, Lindström K, Hartikainen H, Raateland A, Niemi RM (2011) Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biol Biochem 43:1464–1473. https://doi.org/10.1016/j.soilbio.2011.03.018
Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291. https://doi.org/10.1017/S1464793106007007
Wu J, Zhang Q, Yang F, Zhang Q, Cheng X (2017) Does short-term litter input manipulation affect soil respiration and its carbon-isotopic signature in a coniferous forest ecosystem of central China? Appl Soil Ecol 113:45–53. https://doi.org/10.1016/j.apsoil.2017.01.013
Wu J, Chen Q, Jia W, Long C, Cheng X (2020) Asymmetric response of soil methane uptake rate to land degradation and restoration: data synthesis. Glob Change Biol 26:6581–6593. https://doi.org/10.1111/gcb.15315
Xu G, Chen J, Berninger F, Pumpanen J, Bai J, Yu L, Duan B (2015) Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol Biochem 91:1–13. https://doi.org/10.1016/j.soilbio.2015.08.016
Xu Z, Zhang T, Wang S, Wang Z (2020) Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in northeast China: Jilin province case. Appl Soil Ecol 155:103629. https://doi.org/10.1016/j.apsoil.2020.103629
Zhang Q, Feng J, Wu J, Zhang D, Chen Q, Li Q, Long C, Feyissa A, Cheng X (2019) Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degrad Dev 30:459–469. https://doi.org/10.1002/ldr.3240
Zhu M, Tan S, Gu S, Zhang Q (2010) Characteristics of soil erodibility in the Danjiangkou Reservoir Region, Hubei Province. Chin J Soil Sci 41:434–436 ((in Chinese))