Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố quyết định đối với sự nhiễm lentivirus ở các tế bào không phân chia
Tóm tắt
Các lentivirus có đặc điểm chung là lây nhiễm các tế bào mục tiêu không phân chia, điều này phân biệt chúng với các retrovirus gây u, vốn chỉ có khả năng lây nhiễm hiệu quả ở các tế bào đang phân chia. Cuộc tìm kiếm các yếu tố quyết định cho sự nhiễm các tế bào không phân chia đã tạo ra một số ứng cử viên. Từ HIV-1, các protein vi rút matrix, integrase và Vpr đều đã được liên kết. Một yếu tố quyết định cấu trúc, màng DNA trung tâm, cũng đã được liên kết. Bằng chứng hỗ trợ cho từng yếu tố quyết định được đề xuất sẽ được xem xét và so sánh với cách mà các virus khác, không phải retrovirus, vận chuyển genome của chúng vào nhân tế bào. Với dữ liệu hiện có, integrase và màng DNA trung tâm dường như là những yếu tố chính, tuy nhiên cơ chế lây nhiễm ở các tế bào không phân chia vẫn chưa được xác định.
Từ khóa
#lentivirus #tế bào không phân chia #HIV-1 #integrase #màng DNA trung tâmTài liệu tham khảo
Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68:510-516.
Roe T, Reynolds TC, Yu G et al. Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12:2099-2108.
Joag SV, Stephens EB, Narayan O. Lentiviruses. 3rd ed. Vol. 2. Philadelphia: Lippincott-Raven, 1996.
Zhang Z, Schuler T, Zupancic M et al. Sexual transmision and propagation of SIV and HIV inresting and activated CD4+ T cells. Science 1999; 286:1353-1357.
Korin YD. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 1999; 73:6526-6532.
Talcott B, Moore MS. Getting across the nuclear pore complex. Trends Cell Biol 1999; 9:312-318.
Mataj IW, Englmeier L. Nucleocytoplsamic transport: The soluble phase. Ann Rev Biochem 1998; 67:265-306.
Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999; 99:677-690.
Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 1991; 66:837-847.
Cullen BR. Nuclear RNA export pathways. Mol Cell Biol 2000; 20:4181-4187.
Wen W, Meinkoth JL, Tsien RY et al. Identificaion of a signal for rapid export of proteins from the nucleus. Cell 1995; 82:463-473.
Fukuda M, Asano S, Nakamura T et al. CRM1 is repsonsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390:308-311.
Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: A signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83:415-422.
Michael WM. Nucleocytoplasmic shuttling signals: Two for the price of one. Trends Cell Biol 2000; 10:46-50.
Cole CN, Hammell CM. Nucleocytoplasmic transport: driving and directing transport. Curr Biol 1998; 8:R368-372.
Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import in to the nucleus. Nature 1993; 365:661-663.
Görlich D, Dabrowski M, Bischoff FR et al. A novel class of RanGTP binding proteins. J Cell Biol 1997; 138:65-80.
Ohno M, Fornerod M, Mattaj IW. Nucleocytoplasmic transport: the last 200 nanometers. Cell 1998; 92:327-336.
Izaurralde E, Kann M, Pante N et al. Viruses, mircoorganisms and scientists meet the nuclear pore. EMBO J 1999; 18:289-296.
Luby-Phelps K. Ctyoarchitechture and physical properits of cytoplasm: volume, visocity, diffucion, intracellullar surface area. Int Rev Cytol 2000; 192:198-221.
Sodeik B. Mechanisms of viral transport in the cytoplasm. Trends Microbio 2000; 8:465-472.
Whittaker GR, Helenius A. Nuclear import and export of viruses and virus genomes. Virology 1998; 246:1-23.
Greber UF, Kasamatsu H. Nuclear targeting of SV40 and adenovirus. Trends Cell Biol 1996; 6:189-195.
Greber UF, Willetts M, Webster P et al. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75:477-486.
Soumalainen M, Nakano MY, Keller S et al. Microtubule-dependent plus-and minus end-directed motilities are competing for nuclear targeting of adenovirus. J Cell Biol 1999; 144:657-672.
Greber UF, Soumaliainen M, Stidwill RP et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997; 16:5998-6007.
Sodeik B, Ebersold MW, Helenius A. Microtubule-mediated transport of incoming herpes implex virus 1 capsids to the nucleus. J Cell Biol 1997; 136:1007-1021.
O'Neill RE, Jaskunas R, Blobel G et al. Nuclear import of influenza virus RNA can be mediated by viralnucleoproteina nd transport factors requred for protein import. J Biol Chem 1995; 270:22701-22704.
Whittaker G, Bui M, Helenius A. The role of nuclear import and export in influenza virus infection. Trends Cell Biol 1996; 6:67-71.
Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: Studies of organization and composition. J Virol 1997; 71:5382-5390.
Farnet CM, Haseltine WA. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 1991; 65:1910-1915.
Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMGI(Y) protein for function of preintegration complexes in vitro. Cell 1997; 88:483-492.
Li L, Farnet CM, Anderson WF et al. Modulation of activity of Moloney Murine Leukemia virus preintegration complexes by host factors in vitro. 1998; 72:2125-2131.
Chen H, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci USA 1998; 95:15270-15274.
Hindmarsh P, Ridky T, Reeves R et al. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virs concerted DNA integration in vitro. J Virol 1999; 73:2994-3003.
Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human imunodeficiency virus with a sensitive cell line on the basis of activation of an integrated betagalatosidase gene. J Virol 1992; 66:2232-2239.
Cecilia D, KewalRamani VN, O'Leary J et al. Neutralization profiles of primary human immunodeficiency virus type 1 isolates in the context of coreceptor usage. J Virol 1998; 72:6988-6996.
Brown PO, Bowerman B, Varmus HE et al. Correct integration of retroviral DNA in vitro. Cell 1987; 49:349-365.
Courcoul M, Patience C, Rey F et al. Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J Virol 1995; 69:2068-2074.
Kalderon D, Roberts BL, Richardson WD et al. A short amino acid sequence able to specify nuclear localization. Cell 1984; 39:499-509.
Bukrinsky MI, Haggerty S, Dempsey MP et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365:666-669.
von Schwedler U, Kornbluth RS, Trono D. The nuclear localization signal of matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Nat Acad Sci USA 1994; 91:6992-6996.
Heinzinger NK, Bukrinsky MI, Haggerty SA et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci 1994; 91:7311-7315.
Gallay P, Swingler S, Allen C et al. HIV-1 infection of nondividing cells: C-terminal tyrosine phosophorylation of the viral matrix protein is a key regulator. Cell 1995; 80:379-388.
Gallay P, Hope TJ, Chin D et al. HIV-1 infection of non-dividing cells through recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci, USA 1997; 94:9825-9830.
Gallay P, Stitt V, Mundy C et al. 1996. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 70:1027-1032.
Paillart JC, Gottlinger HG. Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag memrane targeting. J Virol 1999; 73:2604-2602.
Fouchier RAM, Malim MH. Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv Virus Res 1999; 52:275-299.
Freed EO. Phosphorylation of residue 131 of HIV-1 matrix is not required for macrophage infection. Cell 1997; 88:171-173.
Freed EO, Englund G, Martin, MA. Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J Virol 1995; 69:3949-3954.
Fouchier RAM, Meyer BE, Simon JHM et al. HIV-1 infection of non-dividing cells: Evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 1997; 16:4531-4539.
Freed, EO. HIV-1 gag proteins: Diverse functions in the virus life cycle. Virology 1998; 251:1-15.
Haffar OK, Popov S, Dubrosvsky L et al. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J Mol Biol 2000; 299:359-368.
Reil H, Bukovsky AA, Gelderblom HR et al. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J 1998; 17:2699-2708.
Westervelt P, Henkel T, Trowbridge DB et al. Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 1992; 66:3925-3931.
Conno RI, Chen BK, Choe S et al. Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 1995; 206:935-944.
Ballliet JW, Kolson DL, Eiger G et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes, vpr, vpu, and nef: Mutational analysis of a primary HIV-1 isolate. Virology 1995; 206:935-934.
Popov S, Dubrovsky L, Lee MA et al. Critical role of reverse transcriptase in the inhibitory mechanism of CNI-H0294 on HIV-1 nuclear translocation. Proc Nat Acad Sci USA 1996; 93:11859-11864.
Vodicka MA, Koepp DM, Silver PA et al. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes & Dev 1998; 12:175-185.
Fouchier RA, Meyer BE, Simon JH et al. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 1998; 72:6004-6013.
Popov S, Rexach M, Blobel G et al. Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem 1998; 273:13347-13352.
Jenkins Y, McEntee M, Weis K et al. Characterization of HIV-1 vpr nuclear import: Analysis of signals and pathways. J Cell Biol 1998; 143:878-885.
Sherman MP, Noronha DE, Heusch MI et al. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 2001; 75:1522-1532.
Kamata M, Aida Y. Two putative alpha-helical domains of human immunodeficiency virus type 1 Vpr mediate nuclear localization. J Virol 2000; 74:7179-7186.
Adam SA, Sterne Marr R, Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 1990; 111:807-816.
Popov S, Rexach M, Zybarth G et al. Viral protein R regulates nuclear import of the HIV-1 preintegration complex. EMBO J 1998; 17:909-917.
Fletcher TMI, Brichacek B, Stivahtis G et al. 1996. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIVsm. EMBO J 15:6155-6165.
Stivahtis GL, Soares MA, Vodicka MA et al. Conservation and host-specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate evolution and biology. J Virol 1997; 71:4331-4338.
Tsurutani N, Kubo M, Maeda Y et al. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for effiecient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 2000; 74:4795-4806.
Pluymers W, Cherepanov P, Schols D et al. Nuclear localization of human immunodeficiency virus type 1 Integrase expressed as a fusion protein with green fluorescent protein. Virology 1999; 258:327-332.
Bouyac-Bertoia M, Dvorin JD, Fouchier RAM et al. HIV-1 Integrase requires a functional NLS. Mol Cell 2001; 7(5):1025-1035.
Deminie CA, Emerman M. Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J Virol 1994; 68:4442-4449.
Dupont S, Sharova N, DeHoratius C et al. A novel nuclear export activity in HIV-1 Matrix protein required for viral replication. Nature 1999; 402:681-685.
Zennou V, Petit C, Guetard D et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000; 101:173-185.
Charneau P, Mirambeau G, Roux P et al. HIV-1 reverse transcription a termination step at the center of the genome. J Mol Biol 1994; 241:651-662.
Charneau P, Alizon M, Clavel F. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 1992; 66:2814-2820.
Follenzi A, Ailles LE, Bakovic S et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Gen 2000; 25:217-222.
Sirven A, Plfumio F, Zennou V et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96:4103-4110.
Rumbaugh JA, Fuentes GM, Bambara RA. Processing of an HIV replication intermediate by the human DNA replication enzyme FEN1. J Biol Chem 1998; 273:28740-28745.
Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272:263-267.
Rey O, Canon J, Krogstad P. HIV-1 Gag protein associates with F-actin present in microfilaments. Virology 1996;220:530534.
Ott DE, Coren LV, Johnson DG et al. Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology 2000; 266:42-51.
Bukrinskaya A, Brichacek B, Mann A et al. Establishment of a functional human immunodeficiency virus typ 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 1998; 188:2113-2125.
Kukolj G, Jones KS, Skalka AM. Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J Virol 1997; 71:843-847.