Determinant representation of Darboux transformation for the AKNS system
Tóm tắt
Từ khóa
Tài liệu tham khảo
Levi D, Ragnisco O, Sym A. Bäcklund transformation vs the dressing method. Lett Nuovo Cimento, 1982, 33(13): 401–406
Levi D, Ragnisco O, Sym A. Dressing method vs classical darboux transformation. Nuovo Cimento, 1984, B83(1): 34–42
Neugerauer G, Meinel R. General N-soliton solution of the AKNS arbitary background. Phys Lett, 1984, 100A(9): 467–470
Li Y S, Gu X S, Zou M R. Three kinds of Darboux transformation for the evolution equation which connect with AKNS eigenvlue problem. Acta Mathematica Sinica, New Series, 1985, 3: 143–151
Gu C H, Zhou Z X. On the Darboux matrix of Backlund transformations of the AKNS system. Lett Math Phys, 1987, 13: 179–187
Cieslinski J. An effective method to compute N-fold Darboux matrix and N-soliton surfaces. J Math Phys, 1991, 32(9): 2395–2399
Steudel H, Meinel R, Neugerauer G. Vandermonde-like determinants and N-fold Darboux/Bäcklund transformations. J Math Phys, 1997, 38(9): 4692–4695
Ma W X. Darboux transformation for a Lax integrable system in 2n dimensions. Lett Math Phys, 1997, 39(1): 33–50
Zeng Y B, Ma W X, Shao Y J. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J Math Phys, 2001, 42(5): 2113–2128
Zeng Y B, Shao Y J, Ma W X. Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources. Commun Theor Phys (Beijing, China), 2002, 38(6): 641–648
Zeng Y B, Xiao T. Generalized Darboux transformations for the KP equation with self-consistent sources. J Phys, 2004, A37(28): 7143–7162
Xiao T, Zeng Y B. A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources. Physica, 2005, A353(1): 38–60
Ablowtiz M J, Kaup D J, Newell A C, Segur H. Nonlinear evolution equation of physical significance. Phys Rev Lett 1973, 31: 125–127
Ablowtiz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991
Hirtoa R, Ohta Y, Satsuma J. Wronskian structures for soliton equations. Prog Theor Phys Suppl, 1988, (94): 59–72
Chau L L, Shaw J C, Yen H C. Solve the KP hierarchy by gauge transformations. Commun Math Phys, 1992, 149: 263–278
He J S, Li Y S, Cheng Y. The determinant representation of the gauge transformation operators. Chin Ann of Math, 2002, B23: 475–486
Sym A. Soliton surfaces and their applications. In: Martini R, ed. Geometric Aspects fo the Einstein Equation and Integrable Systems. New York: Springer-Verlag, 1985, 154–231
Cieslinski J, Gragert P K H, Sym A. Exact solution to localized-induction-approximation equation modeling smoke ring motion. Phys Rev Lett, 1986, 57(13): 1507–1510
Bobenko A I. Surfaces in terms of 2 by 2 matrixes, old and new integrable cases. In: Harmonic maps and integrable systems. Germany: Braunschweig, Vieweg and Sohn, 1994, 83–127
Gu C H, Hu H S, Zhou Z X. Darboux Transformation in Soliton Theory and and Its Geometric Applications (in Chinese). Shanghai: Shanghai Scientific and Technical Publishers, 1999
Rogers C, Schief W K, Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge Uniersity Press, 2002