Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network

Sukanta Sabut1, O.P. Pandey2, Bhabani Shankar Prasad Mishra2, Monalisa Mohanty3
1School of Electronics Engineering, KIIT deemed to be University, Bhubaneswar, India
2School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India
3Dept. of ECE, ITER, SOA Deemed to be University, Bhubaneswar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98:2334–2351

Scapigliati A, Ristagno G, Cavaliere F (2013) The best timing for defibrillation in shockable cardiac arrest. Anestesiology 79(1):92–101

Macallan DC, Bell JA, Braddick M, Endersby K, Rizzo-Naudi J (1990) The electrocardiogram in general practice: its use and its interpretation. J R Soc Med 83(9):559–562

Khazaei M, Raeisi K, Goshvarpour A, Ahmadzadeh M (2018) Early detection of sudden cardiac death using nonlinear analysis of heart rate variability. Biocybern Biomed Eng 38(4):931–940

Liew R (2011) Electrocardiogram based predictors of sudden cardiac death in patients with coronary artery disease. Clin Cardiol 34(8):466–473

Pietrasik G, Zarba W (2012) QRS fragmentation: diagnostic and prognostic significance. Cardiol J 19(2):114–121

de Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196–1206

Rakshit M, Das S (2017) An efficient wavelet-based automated R-peaks detection method using Hilbert transform. Biocybern Biomed Eng 37(3):566–577

Zijlstra JA, Bekkers LE, Hulleman M (2017) Automated external defibrillator and operator performance in out-of-hospital cardiac arrest. Resuscitation 118:140–146

Linker DT (2016) Accurate, automated detection of atrial fibrillation in ambulatory recordings. Cardiovasc Eng Technol 7:182–189

Monalisa M, Sahoo S, Biswal P, Sabut S (2018) Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomed Signal Process Control 44:200–208

Sansone M, Fusco R, Pepino A, Sansone C (2013) Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthc Eng 4(4):465–504

Hejč J, Vítek M, Ronzhina M et al (2015) A wavelet-based ECG delineation method: adaptation to an experimental electrograms with manifested global ischemia. Cardiovasc Eng Technol 6:364–375

Maji U, Mitra M, Pal S (2017) Characterization of cardiac arrhythmias by variational mode decomposition technique. Biocybern Biomed Eng 37(3):3578–3589

Lahmiri S (2014) Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc Technol Lett 1(3):104–109

Anas EA, Lee SY, Hasan MK (2011) Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput Biol Med 41:110–114

Alonso-Atienza F, Morgado E, Fernández-Martínez L, García-Alberola A, Rojo-Álvarez JL (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61:832–840

Li Q, Rajagopalan C, Clifford GD (2014) Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng 61:1607–1613

Panda R, Jain S, Tripathy RK, Acharya UR (2020) Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2020.103939

Alwan Y, Cvetkovic Z, Curtis MJ (2018) Methods for improved discrimination between ventricular fibrillation and tachycardia. IEEE Trans Biomed Eng 65(10):2143–2151

Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25(3):65–69. https://doi.org/10.1038/s41591-018-0268-3

Akansu AN, Haddad RA (1992) Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic Press, Boston

Lin H-Y, Liang SY, Ho YL, Lin YH, Ma HP (2014) Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Innov Res BioMed Eng 35(6):351–361

Mandic DP, Rehman N, Wu Z, Huang NE (2013) Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Signal Process Mag 30(6):74–86

Xiong H, Zheng C, Liu J, Song L (2019) ECG signal in-band noise de-noising base on EMD. J Circuits Syst Comput 28(1):1950017

Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

Singh P, Pradhan G (2018) Variational mode decomposition-based ECG denoising using non-local means and wavelet domain filtering. Australas Phys Eng Sci Med 41(4):891–904

Dreyfus SE (1990) Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure. J Guid Control Dyn 13(5):926–928

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

Elola A, Aramendi E, Irusta U, Picón A, Alonso E, Owens P, Idris A (2019) Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest. Entropy 21:305–325

Acharya UR, Fujita H, Oh SL, Tan RS, Acharya UR (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Fut Gener Comput Syst 79(3):952–959

Sharma M, Singh S, Kumar A et al (2019) Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features. Comput Biol Med 115:103446

Swapna G, Soman KP, Vinayakumar R (2018) Automated detection of cardiac arrhythmia using deep learning techniques’. Procedia Comput Sci 132:1192–1201

Xu Y, Wang D, Zhang W, Ping P, Feng L (2018) Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomed Signal Process Control 39:219–229

Zhen-Xing Z, Tian XW, Lim JS (2010) Real-time algorithm for a mobile cardiac monitoring system to detect life-threatening arrhythmias. Proc Int Conf Comput Autom Eng 4:232–236

Xie HB, Gao ZM, Liu H (2011) Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Syst Appl 38:3973–3981

Yıldırım O, Pławiak P, Tan RS, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102:411–420

Fokkenrood S, Leijdekkers P, Gay V (2007) Ventricular tachycardia/fibrillation detection algorithm for 24/7 personal wireless heart monitoring. In: Int. conf. on smart homes and health telematics, pp 110–120

Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J (2018) ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas 39(9):094006

Hanbay K (2019) Deep neural network based approach for ECG classification using hybrid differential features and active learning. IET Signal Proc 13(2):165–175

Asgharzadeh-Bonab A, Amirani MC, Mehri A (2020) Spectral entropy and deep convolutional neural network for ECG beat classification. Biocybern Biomed Eng 40(2):691–700

Sannino G, Pietro GD (2018) A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Fut Gener Comput Syst 86:446–455

Mathews SM, Kambhamettu C, Barner KE (2018) A novel application of deep learning for single-lead ECG classification. Comput Biol Med 99:53–62

Picon A, Irusta U, Álvarez-Gila A, Aramendi E, Alonso-Atienza F, Figuera C, Ayala U, Garrote E, Wik L, Kramer-Johansen J, Eftestøl T (2019) Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE 14:e0216756

Amann A, Tratnig R, Unterkofler K (2005) Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. Biomed Eng Online 4(60):1–23

Li Q, Rajagopalan C, Clifford GD (2014) A machine learning approach to multi-level ECG signal quality classification. Comput Methods Prog Biomed 117(3):435–447

Yu SJ, Koh P, Kwon H, Kimg DS, Kim HK (2016) Hurst parameter based anomaly detection for intrusion detection system. In: Int con comp info technology, pp 234–240

Mohanty M, Biswal P, Sabut S (2019) Ventricular tachycardia and fibrillation detection using DWT and decision tree classifier. J Mech Med Biol 19(1):1–23

Watson JN, Addison PS, Clegg GR, Holzer M, Sterz F, Robertson CE (2004) A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation. Resuscitation 43(2):121–127

Karegowda AG, Manjunath AS, Jayaram MA (2010) Comparative study of attribute selection using gain ratio and correlation based feature selection. Int J Inf Technol Knowl Manag 2(2):271–277

Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv: 1505.00853

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: Int. conf. learning representations, pp 1–15