Detection of ozone stress in rice cultivars using spectral reflectance
Tài liệu tham khảo
Ainsworth, 2008, Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration, Glob. Change Biol., 14, 1642, 10.1111/j.1365-2486.2008.01594.x
Ainsworth, 2014, Using leaf optical properties to detect ozone effects on foliar biochemistry, Photosynth. Res., 119, 65, 10.1007/s11120-013-9837-y
Akhtar, 2010, Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.), Environ. Pollut., 158, 2970, 10.1016/j.envpol.2010.05.026
Ashrafuzzaman, 2017, Diagnosing ozone stress and differential tolerance in rice (Oryza Sativa L.) with ethylenediurea (EDU), Environ. Pollut., 230, 339, 10.1016/j.envpol.2017.06.055
Baier, 2005, Oxidative stress and ozone: perception, signalling and response, Plant Cell Environ., 28, 1012, 10.1111/j.1365-3040.2005.01326.x
Brauer, 2016, Ambient air pollution exposure estimation for the global burden of disease 2013, Environ. Sci. Technol., 50, 79, 10.1021/acs.est.5b03709
Broge, 2001, Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ., 76, 156, 10.1016/S0034-4257(00)00197-8
Carter, 1996, Narrow-band reflectance imagery compared with thermalimagery for early detection of plant stress, J. Plant Physiol., 148, 515, 10.1016/S0176-1617(96)80070-8
Castagna, 2001, Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants, New Phytol., 152, 223, 10.1046/j.0028-646X.2001.00253.x
Chaudhary, 2013, Intraspecific responses of six indian clover cultivars under ambient and elevated levels of ozone, Environ. Sci. and Pollut. Res., 20, 5318, 10.1007/s11356-013-1517-0
Daughtry, 2000, Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance, Remote Sens. Environ., 74, 229, 10.1016/S0034-4257(00)00113-9
DeBoer, 2015, Understanding the heat map, Cartograph. Perspect., 80, 39, 10.14714/CP80.1314
Eitel, 2011, Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland, Remote Sens. Environ., 115, 3640, 10.1016/j.rse.2011.09.002
Emberson, 2018, Ozone effects on crops and consideration in crop models, Eur. J. Agron., 100, 19, 10.1016/j.eja.2018.06.002
Fiscus, 2005, Crop Responses to Ozone: Uptake, Modes of Action, Carbon Assimilation and Partitioning, Plant Cell Environ., 28, 997, 10.1111/j.1365-3040.2005.01349.x
Frei, 2015, Breeding of ozone resistant rice: Relevance, approaches and challenges, Environ. Pollut., 197, 144, 10.1016/j.envpol.2014.12.011
Frei, 2008, Genotypic Variation in Tolerance to Elevated Ozone in Rice: Dissection of Distinct Genetic Factors Linked to Tolerance Mechanisms, J. Exp. Bot., 59, 3741, 10.1093/jxb/ern222
Gamon, 1999, Assessing leaf pigment content and activity with a reflectometer, New Phytol., 143, 105, 10.1046/j.1469-8137.1999.00424.x
Gamon, 1992, A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency, Remote Sens. Environ., 41, 35, 10.1016/0034-4257(92)90059-S
Ghulam, 2016, Spectral separability analysis of five soybean cultivars with different ozone tolerance using hyperspectral field spectroscopy, 6312
Gitelson, 1994, Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. And Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation, J. Plant Physiol., 143, 286, 10.1016/S0176-1617(11)81633-0
Gitelson, 2001, Optical properties and nondestructive estimation of anthocyanin content in plant leaves, Photochem. Photobiol., 74, 38, 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
Gitelson, 2003, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, J. Plant Physiol., 160, 271, 10.1078/0176-1617-00887
Gitelson, 2002, Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochem. Photobiol., 75, 272, 10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2
Gitelson, 1996, Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sens. Environ., 58, 289, 10.1016/S0034-4257(96)00072-7
Gosselin, 2020, Using visual ozone damage scores and spectroscopy to quantify soybean responses to background ozone, Remote Sensing, 12, 93, 10.3390/rs12010093
Haboudane, 2004, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture.”, Remote Sens. Environ., 90, 337, 10.1016/j.rse.2003.12.013
Haboudane, 2002, Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture, Remote Sens. Environ., 81, 416, 10.1016/S0034-4257(02)00018-4
Hunt, 2013, A visible band index for remote sensing leaf chlorophyll content at the canopy scale, Geoinformation, 21, 103
Kangasjärvi, 2005, Signalling and cell death in ozone‐exposed plants, Plant Cell Environ., 28, 1021, 10.1111/j.1365-3040.2005.01325.x
Krezhova, 2011, Spectral remote sensing of the responses of soybean plants to environmental stresses, 215
Lefohn, 2018, Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research, Elementa, 6, 28
Li, 2017, Different responses of transgenic Bt rice and conventional rice to elevated ozone concentration, Environ. Sci. Pollut. Res., 24, 8352, 10.1007/s11356-017-8508-5
Marchica, 2019, Early Detection of Sage (Salvia officinalis L.) Responses to Ozone Using Reflectance Spectroscopy, Plants, 8, 346, 10.3390/plants8090346
Masutomi, 2019, Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice, Sci. Total Environ., 655, 1009, 10.1016/j.scitotenv.2018.11.132
Merzlyak, 1999, Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiol. Plant, 106, 135, 10.1034/j.1399-3054.1999.106119.x
Mills, 2018, Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance, Glob. Change Biol., 24, 4869, 10.1111/gcb.14381
Pandey, 2018, Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum Aestivum L.) cultivars: growth, gas-exchange, antioxidant status, grain yield and quality, Ecotoxicol. Environ. Saf., 158, 59, 10.1016/j.ecoenv.2018.04.014
Pang, 2009, Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone, Agric. Ecosyst. Environ., 132, 203, 10.1016/j.agee.2009.03.012
Panigada, 2014, Fluorescence, PRI and canopy temperature for water stress detection in cereal crops, Int. J. Appl. Earth Obs. Geoinf., 30, 167, 10.1016/j.jag.2014.02.002
Peng, 2017, Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements, J. Appl. Remote Sens., 11, 10.1117/1.JRS.11.026034
Peñuelas, 1995, Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance, Photosynthetica, 31, 221
Peñuelas, 1995, Assessment of photosynthetic radiation-use efficiency with spectral reflectance, New Phytol., 131, 291, 10.1111/j.1469-8137.1995.tb03064.x
Rouse, 1974, 309
Sagan, 2018, Effects of ambient ozone on soybean biophysical variables and mineral nutrient accumulation, Remote Sens., 10, 562, 10.3390/rs10040562
Serbin, 2014, Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species, Ecol. Appl., 24, 1651, 10.1890/13-2110.1
Sharma, 2019, Revisiting the crop yield loss in India attributable to ozone, Atmosph. Environ., 1
Sims, 2002, Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 81, 337, 10.1016/S0034-4257(02)00010-X
Song, 2011, Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance, ISPRS J. Photogramm. Remote Sens., 66, 672, 10.1016/j.isprsjprs.2011.05.002
Sukhov, 2021, Proximal imaging of changes in photochemical reflectance index in leaves based on using pulses of green-yellow light, Remote Sens., 13, 1762, 10.3390/rs13091762
Sukhova, 2021, Complex analysis of the efficiency of difference reflectance indices on the basis of 400–700 nm wavelengths for revealing the influences of water shortage and heating on plant seedlings, Remote Sens., 13, 962, 10.3390/rs13050962
Sun, 2021, Using spectral reflectance to estimate the leaf chlorophyll content of maize inoculated with arbuscular mycorrhizal fungi under water stress, Front. Plant Sci., 12, 646173, 10.3389/fpls.2021.646173
Ueda, 2015, Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study, J. Exp. Bot., 66, 293, 10.1093/jxb/eru419
Ustin, 2009, Retrieval of foliar information about plant pigment systems from high resolution spectroscopy, Remote Sens. Environ., 113, 67, 10.1016/j.rse.2008.10.019
Vainonen, 2015, Plant signalling in acute ozone exposure, Plant Cell Environ., 38, 240, 10.1111/pce.12273
Van Der Walt, 2011, The NumPy array: a structure for efficient numerical computation.”, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37
Wang, 2014, Pyramiding of Ozone Tolerance QTLs OzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice, Environ. Exp. Bot., 104, 26, 10.1016/j.envexpbot.2014.03.005
Xue, 2017, Significant remote sensing vegetation indices: a review of developments and applications, J. Sens.
Yendrek, 2017, High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance, Plant Physiol., 173, 614, 10.1104/pp.16.01447
Zarco-Tejada, 2001, Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data, IEEE Trans. Geosci. Remote Sens., 39, 1491, 10.1109/36.934080