Detection of ataxia with hybrid convolutional neural network using static plantar pressure distribution model in patients with multiple sclerosis
Tài liệu tham khảo
Tavares, 2000, Matching Image Objects in Dynamic Pedobarography, 8
Oliveira, 2012, Registration of plantar pressure images, Int. J. Num. Method Biomed. Eng., 28, 589, 10.1002/cnm.1461
Oliveira, 2009, Rapid pedobarographic image registration based on contour curvature and optimization, J. Biomech., 42, 2620, 10.1016/j.jbiomech.2009.07.005
Oliveira, 2010, Registration of pedobarographic image data in the frequency domain, Comput. Methods Biomech. Biomed. Eng., 13, 731, 10.1080/10255840903573020
Oliveira, 2011, Spatio-temporal Alignment of Pedobarographic Image Sequences, Med. Biol. Eng. Comput., 49, 843, 10.1007/s11517-011-0771-x
Bastos, 2010, 73, 339
Oliveira, 2012, Towards an efficient and robust foot classification from pedobarographic images, Comput. Methods Biomech. Biomed. Eng., 15, 1181, 10.1080/10255842.2011.581239
Sousa, 2012, static and dynamic foot movements: a review, Somatosens. Mot. Res., 29, 131, 10.3109/08990220.2012.725680
Gehlsen, 1986, Gait characteristics in multiple sclerosis: progressive changes and effects of exercise on parameters, Arch. Phys. Med. Rehabil., 67, 536
Noseworthy, 1990, Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial, Neurology, 40, 10.1212/WNL.40.6.971
Pradhan, 2015, Automated classification of neurological disorders of gait using spatio-temporal gait parameters, J. Electromyogr. Kinesiol., 25, 413, 10.1016/j.jelekin.2015.01.004
Summa, 2020, Validation of low-cost system for gait assessment in children with ataxia, Comput. Methods Programs Biomed., 196, 10.1016/j.cmpb.2020.105705
Phan, 2019, A random forest approach for quantifying gait ataxia with truncal and peripheral measurements using multiple wearable sensors, IEEE Sens. J., 20, 723, 10.1109/JSEN.2019.2943879
LeMoyne, 2016, Wearable body and wireless inertial sensors for machine learning classification of gait for people with Friedreich's ataxia, 147
Phan, 2019, A random forest approach for quantifying gait ataxia with truncal and peripheral measurements using multiple wearable sensors, IEEE Sens. J., 20, 723, 10.1109/JSEN.2019.2943879
Procházka, 2021, Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring, IEEE Trans. Neural Syst. Rehabil. Eng., 29, 360, 10.1109/TNSRE.2021.3051093
Dostal, O., Tupa, O., Prochazka, A., Vysata, O., Pazdera, L., & Valis, M. (2020). The Best Motion Sensor Localization For Ataxic Gait Assessment (1924).
Alizadehkhaiyat, 2015, Electromyographic assessment of forearm muscle function in tennis players with and without Lateral Epicondylitis, J. Electromyogr. Kinesiol., 25, 876, 10.1016/j.jelekin.2015.10.013
Balgetir, 2021, Detection of ataxia in low disability MS patients by hybrid convolutional neural networks based on images of plantar pressure distribution, Mult. Scler. Relat. Disord., 10.1016/j.msard.2021.103261
Jin, 2020, Gait characteristics and clinical relevance of hereditary spinocerebellar ataxia on deep learning, Artif. Intell. Med., 103, 10.1016/j.artmed.2020.101794
Schmitz-Hübsch, 2006, Reliability and validity of the International Cooperative Ataxia Rating Scale: a study in 156 spinocerebellar ataxia patients, Mov. Disord., 21, 699, 10.1002/mds.20781
Schmitz-Hübsch, 2006, Scale for the assessment and rating of ataxia: development of a new clinical scale, Neurology, 66, 1717, 10.1212/01.wnl.0000219042.60538.92
Notermans, 1994, Measuring ataxia: quantification based on the standard neurological examination, J. Neurol. Neurosurg. Psychiatry, 57, 22, 10.1136/jnnp.57.1.22
DeLisa, J. A. (Ed.). (1998). Gait analysis in the science of rehabilitation (Vol. 2). Diane Publishing.
Marquer, 2014, The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review, Ann. Phys. Rehabil. Med., 57, 67, 10.1016/j.rehab.2014.01.002
Hammond, 2000, The age-range of risk of developing multiple sclerosis: evidence from a migrant population in Australia, Brain, 123, 968, 10.1093/brain/123.5.968
Ramachandra, 2012, Test-retest reliability of the Win-Track platform in analyzing the gait parameters and plantar pressures during barefoot walking in healthy adults, Foot Ankle Spec., 5, 306, 10.1177/1938640012457680
He, 2016, Deep residual learning for image recognition, 770
Russakovsky, 2015, Imagenet large scale visual recognition challenge, Int. J. Comput. Vision, 115, 211, 10.1007/s11263-015-0816-y
Shin, 2016, Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imaging, 35, 1285, 10.1109/TMI.2016.2528162
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv preprint arXiv:1605.07146
Huang, Gao & Liu, Zhuang & van der Maaten, Laurens & Weinberger, Kilian. (2017). Densely Connected Convolutional Networks. doi:10.1109/CVPR.2017.243
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861
Zoph, 2018, Learning transferable architectures for scalable image recognition, 8697
Wang, L. (Ed.). (2005). Support vector machines: theory and applications (Vol. 177). Springer Science & Business Media
Cover, 1967, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory, 13, 21, 10.1109/TIT.1967.1053964
Rosenblatt, 1957
Rumelhart, 1985
Provost, 1998, Glossary of terms, J. Mach. Learn., 30, 271