Detection function method and its application to a class of quintic Hamiltonian systems with quintic perturbations
Tài liệu tham khảo
Smale, 1991, Dynamics restrospective: great problem, attempts that failed, Physica D, 51, 261, 10.1016/0167-2789(91)90238-5
Arnold, 1990, Ten problems, Adv. Sov. Math, 1, 1
Ilyashenko, 1991
Arnold, 1977, Loss of stability of sell-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl., 11, 85, 10.1007/BF01081886
Li, 2003, Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcat. Chaos, 13, 47, 10.1142/S0218127403006352
Giné, 2007, On some open problems in planar differential systems and Hilbert’s 16th problem, Chaos, Solitons & Fractals, 31, 1118, 10.1016/j.chaos.2005.10.057
Li, 1989, Rotation symmetry groups of Hamiltonian system, Ann. Diff. Equs, 5, 25
Li, 1987, Bifurcations of limit cycles forming compound eyes in the cubic system, Chin. Ann. Math., 8B, 391
Li, 1991, Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system, Publ. Math., 35, 487, 10.5565/PUBLMAT_35291_13
Li, 2002, Investigations of bifurcations of limit cycles in a Z2-equivariant planar vector field of degree 5, Int. J. Bifurcat. Chaos, 12, 2137, 10.1142/S0218127402005698
Chan, 2001, Bifurcations of limit cycles in a Z3-equivariant planar vector field of degree 5, Int. J. Bifurcat. Chaos, 11, 2287, 10.1142/S0218127401003267
Li, 2005, On the control of parameters of distributions of limit cycles for a Z2-equivariant perturbed planar Hamiltonian polynomial vector field, Int. J. Bifurcat. Chaos, 15, 137, 10.1142/S0218127405012065
Li, 2002, Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5, Sci. China (Series A), 45, 817
Yu, 2005, Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields, Chaos, Solitons & Fractals, 24, 329, 10.1016/j.chaos.2004.09.036
Yu, 2006, Analysis on limit cycles of Zq-equivariant polynomial vector fields with degree 3 or 4, J. Math. Anal. Appl., 322, 51, 10.1016/j.jmaa.2005.08.068
Yao, 2007, Bifurcation of small limit cycles in Z5-equivariant planar vector fields of order 5, J. Math. Anal. Appl., 328, 400, 10.1016/j.jmaa.2006.05.056
Wu, 2007, On the limit cycles of a Hamiltonian under Z4-equivariant quintic perturbation, Chaos, Solitons & Fractals, 33, 298, 10.1016/j.chaos.2006.01.120
Chen, 2002, The number of limit cycles for a class quintic Hamiltonian systems under quintic perturbations, J. Austral. Math. Soc., 73, 37, 10.1017/S1446788700008466
Wang, 2005, Bifurcation of limit cycles in a quintic Hamiltonian system under sixth-order perturbation, Chaos, Solitons & Fractals, 26, 1317, 10.1016/j.chaos.2005.03.010
Zang, 2006, Bifurcations of limit cycles in a cubic system with cubic perturbations, Appl. Math. Comput., 176, 341, 10.1016/j.amc.2005.09.024
Carr, 1985, Abelian integrals and bifurcation theory, J. Differ. Equations, 59, 413, 10.1016/0022-0396(85)90148-2
Zhang, 1992
Guckenheimer, 1992
Perko, 1996
Pontryagin, 1934, On dynamical systems close to Hamiltonian systems, ZH. EKsp. Tero. Fiz, 4, 234
Ye, 1986
Melnikov, 1963, On the stability of the center for time periodic perturbations, Trans. Moscow. Math. Soc, 12, 1
Chen, 2004, The topological classification of plane diagram of a class quintic Hamiltonian system, Acta. Math. Sci, 24A, 737
Gudkov, 1974, The topology of real projective algebraic varieties, Russ. Math. Surv., 29, 1, 10.1070/RM1974v029n04ABEH001288
Abell, 1994