Detecting two qubit both-way positive discord states
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics - Tập 73 - Trang 1-10 - 2019
Tóm tắt
Quantum discord plays a pragmatic role in analyzing nonclassical feature of quantum correlations beyond entanglement. It is used in several information processing protocols which lacks sufficient amount of entanglement to be used as a resource. We have provided with an analytical method of detecting quantum discord of an arbitrary two qubit state. We have formulated a set of necessary and sufficient conditions for any two qubit state to be a both-way non-zero quantum discord state. As quantum discord is asymmetric in nature, we have framed the set of if and only if conditions for a two qubit state to be classical-quantum as well for it to be quantum-classical. Interestingly, not only correlation tensor but also local Bloch vector (corresponding to the classical party) plays a role for detecting the state to be a positive discord state.
Tài liệu tham khảo
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)
A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)
H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)
M.D. Lang, C.M. Caves, A. Shaji, Int. J. Quantum. Inform. 9, 1553 (2011)
A. Datta, Phys. Rev. A 80, 052304 (2009)
B. Bylicka, D. Chruscinski, Phys. Rev. A 81, 062102 (2010)
B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)
J. Maziero, R.M. Serra, Int. J. Quantum. Inform. 10, 1250028 (2012)
A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acin, Phys. Rev. A 81, 052318 (2010)
D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)
R. Laflamme, D.G. Cory, C. Negrevergne, L. Viola, Quantum Inf. Comput. 2, 166 (2002)
J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)
Z. Merali, Nature (London) 474, 24 (2011)
K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)
A. Brodutch, D.R. Terno, Phys. Rev. A 83, 010301 (2011)
V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)
K. Modi, H. Cable, M. Williamson, V. Vedral, Phys. Rev. X 1, 021022 (2011)
S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 2000)
L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)
M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)
M. Horodecki, J. Oppenheim, A. Winter, Nature 436, 673 (2005)
M. Horodecki, J. Oppenheim, A. Winter, Comm. Math. Phys. 269, 107 (2007)
M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)
W.H. Zurek, Ann. Phys. (Leipzig) 9, 855 (2000)
M. Zwolak, H.T. Quan, W.H. Zurek, Phys. Rev. A 81, 062110 (2010)
K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)
R. Srikanth, S. Banerjee, C.M. Chandrashekar, Phys. Rev. A 81, 062123 (2010)
G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Phys. Rev. A 85, 052101 (2012)
T. Yu, J.H. Eberly, Quantum Inform. Comput. 7, 459 (2007)
A.R.P. Rau, J. Phys. A: Math. Theor. 42, 412002 (2009)
R.F. Werner, Phys. Rev. A 40, 4277 (1989)
D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, A. Winter, Phys. Rev. A 83, 032324 (2011)
H. Barnum, C. Caves, C. Fuchs, R. Jozsa, B. Schumacher, Phys. Rev. Lett. 76, 2818 (1996)
W.K. Wootters, W.H. Zurek, Nature (London) 299, 802 (1982)
S. Luo, Lett. Math. Phys. 92, 143 (2010)
S. Luo, N. Li, X. Cao, Phys. Rev. A 79, 054305 (2009)
S. Luo, W. Sun, Phys. Rev. A 82, 012338 (2010)
G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010)
G. Adesso, D. Girolami, Int. J. Quantum. Inform. 9, 1773 (2011)