Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models
Tóm tắt
Từ khóa
Tài liệu tham khảo
OJ Brady, 2012, Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLOS Negl Trop Dis, 6, e1760, 10.1371/journal.pntd.0001760
SA Rasmussen, 2016, Zika virus and birth defects—reviewing the evidence for causality, N Engl J Med, 374, 1981, 10.1056/NEJMsr1604338
TW Scott, 2012, Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission, Trends Parasitol, 28, 114, 10.1016/j.pt.2012.01.001
JP Messina, 2016, Mapping global environmental suitability for Zika virus, eLife, 5, e15272, 10.7554/eLife.15272
K Magori, 2009, Skeeter Buster: A stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLOS Negl Trop Dis, 3, e508, 10.1371/journal.pntd.0000508
MA Johansson, 2014, Nowcasting the spread of chikungunya virus in the Americas, PLoS ONE, 9, e104915, 10.1371/journal.pone.0104915
TA Perkins, 2015, Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the Americas, PLoS Curr, 7
CW Morin, 2015, Meteorologically driven simulations of dengue epidemics in San Juan, PR, PLoS Negl Trop Dis, 9, e0004002, 10.1371/journal.pntd.0004002
Zhang Q, Sun K, Chinazzi M, Pastore-Piontti A, Dean NE, Rojas DP, et al. Projected spread of Zika virus in the Americas. bioRxiv. 2016; 066456.
AI Dell, 2011, Systematic variation in the temperature dependence of physiological and ecological traits, Proc Natl Acad Sci, 108, 10591, 10.1073/pnas.1015178108
EA Mordecai, 2013, Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol Lett, 16, 22, 10.1111/ele.12015
DA Focks, 1993, Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development, J Med Entomol, 30, 1003, 10.1093/jmedent/30.6.1003
HM Yang, 2009, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol Infect, 137, 1188, 10.1017/S0950268809002040
L Rueda, 1990, Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae), J Med Entomol, 27, 892, 10.1093/jmedent/27.5.892
W Tun-Lin, 2000, Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia, Med Vet Entomol, 14, 31, 10.1046/j.1365-2915.2000.00207.x
K Kamimura, 2002, Effect of temperature on the development of Aedes aegypti and Aedes albopictus, Med Entomol Zool, 53, 53, 10.7601/mez.53.53_1
L Eisen, 2014, The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins, J Med Entomol, 51, 496, 10.1603/ME13214
H Delatte, 2009, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean, J Med Entomol, 46, 33, 10.1603/033.046.0105
EJ Muturi, 2011, Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae), J Med Entomol, 48, 243, 10.1603/ME10017
BW Alto, 2001, Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory, J Med Entomol, 38, 548, 10.1603/0022-2585-38.4.548
CJ Westbrook, 2010, Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus, Vector-Borne Zoonotic Dis, 10, 241, 10.1089/vbz.2009.0035
H Briegel, 2001, Aedes albopictus (Diptera: Culicidae): Physiological aspects of development and reproduction, J Med Entomol, 38, 566, 10.1603/0022-2585-38.4.566
DC Calado, 2002, Influência da temperatura sobre a longevidade, fecundidade e atividade hematofágica de Aedes (Stegomyia) albopictus Skuse, 1894 (Diptera, Culicidae) sob condições de laboratório, Rev Bras Entomol, 46, 93, 10.1590/S0085-56262002000100011
EB Beserra, 2009, Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae), Iheringia Sér Zool
CJ Westbrook, 2010, Larval ecology and adult vector competence of invasive mosquitoes Aedes albopictus and Aedes aegypti for Chikungunya virus
J Couret, 2014, Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae), PLoS ONE, 9, e87468, 10.1371/journal.pone.0087468
Ezeakacha N. Environmental impacts and carry-over effects in complex life cycles: the role of different life history stages. Dissertation. 2015; Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://aquila.usm.edu/dissertations/190" xlink:type="simple">http://aquila.usm.edu/dissertations/190</ext-link>
H-J Teng, 2000, Development and Survival of Immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the Laboratory: Effects of Density, Food, and Competition on Response to Temperature, J Med Entomol, 37, 40, 10.1603/0022-2585-37.1.40
S Wiwatanaratanabutr, 2006, Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus, Med Vet Entomol, 20, 300, 10.1111/j.1365-2915.2006.00640.x
F-Z Xiao, 2014, The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus, Arch Virol, 159, 3053, 10.1007/s00705-014-2051-1
DM Watts, 1987, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am J Trop Med Hyg, 36, 143, 10.4269/ajtmh.1987.36.143
DM McLean, 1974, Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures, Can J Microbiol, 20, 255, 10.1139/m74-040
LB Carrington, 2013, Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti, PLoS Negl Trop Dis, 7, e2190, 10.1371/journal.pntd.0002190
NC Davis, 1932, The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes aegypti, Am J Epidemiol, 16, 163, 10.1093/oxfordjournals.aje.a117853
DM McLean, 1975, Dengue virus transmission by mosquitoes incubated at low temperatures, Mosq News
DA Focks, 1995, A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results, Am J Trop Med Hyg, 53, 489, 10.4269/ajtmh.1995.53.489
BW Alto, 2013, Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages, Am J Trop Med Hyg, 88, 497, 10.4269/ajtmh.12-0421
Mordecai EA. Model code, data, and output for “Detecting the impact of temperature on transmission of Zika, dengue and chikungunya using mechanistic models.” [Internet]. 2017.
AM Stewart Ibarra, 2013, Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control, PLoS ONE, 8, e78263, 10.1371/journal.pone.0078263
OJ Brady, 2014, Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission, Parasit Vectors, 7, 338, 10.1186/1756-3305-7-338
CJ Carlson, 2016, An ecological assessment of the pandemic threat of Zika virus, PLoS Negl Trop Dis, 10, e0004968, 10.1371/journal.pntd.0004968
AM Samy, 2016, Mapping the global geographic potential of Zika virus spread, Mem Inst Oswaldo Cruz, 111, 559, 10.1590/0074-02760160149
A Wesolowski, 2015, Impact of human mobility on the emergence of dengue epidemics in Pakistan, Proc Natl Acad Sci
J Liu-Helmersson, 2014, Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential, PLoS ONE, 9, e89783, 10.1371/journal.pone.0089783
C Caminade, 2017, Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015, Proc Natl Acad Sci, 114, 119, 10.1073/pnas.1614303114
II Bogoch, 2016, Anticipating the international spread of Zika virus from Brazil, The Lancet, 387, 335, 10.1016/S0140-6736(16)00080-5
J-F Briere, 1999, A novel rate model of temperature-dependent development for arthropods, Environ Entomol, 28, 22, 10.1093/ee/28.1.22
J Li, 2011, The Failure of <italic>R</italic>0, Comput Math Methods Med, 2011, e527610, 10.1155/2011/527610
L Lambrechts, 2011, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc Natl Acad Sci, 108, 7460, 10.1073/pnas.1101377108
Rohatgi A. WebPlotDigitizer [Internet]. 2015. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arohatgi.info/WebPlotDigitizer" xlink:type="simple">http://arohatgi.info/WebPlotDigitizer</ext-link>
LR Johnson, 2015, Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach, Ecology, 96, 203, 10.1890/13-1964.1
2014, R: A Language and Environment for Statistical Computing
Plummer M. rjags: Bayesian Graphical Models using MCMC [Internet]. 2016. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=rjags" xlink:type="simple">http://CRAN.R-project.org/package=rjags</ext-link>
Plummer M, Best N, Cowles K, Vines K. CODA: Convergence Diagnosis and Output Analysis for MCMC. 2006.
WJ Parton, 1981, A model for diurnal variation in soil and air temperature, Agric Meteorol, 23, 205, 10.1016/0002-1571(81)90105-9
KP Paaijmans, 2013, Temperature variation makes ectotherms more sensitive to climate change, Glob Change Biol, 19, 2373, 10.1111/gcb.12240
DA Vasseur, 2014, Increased temperature variation poses a greater risk to species than climate warming, Proc R Soc Lond B Biol Sci, 281, 20132612, 10.1098/rspb.2013.2612
Narasimhan R. weatherData: Get Weather Data from the Web [Internet]. 2014. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/weatherData/index.html" xlink:type="simple">https://cran.r-project.org/web/packages/weatherData/index.html</ext-link>
Breheny P, Burchett W. visreg: Visualization of Regression Models [Internet]. 2016. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/visreg/index.html" xlink:type="simple">https://cran.r-project.org/web/packages/visreg/index.html</ext-link>