Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models

PLOS Neglected Tropical Diseases - Tập 11 Số 4 - Trang e0005568
Erin A. Mordecai1, Jeremy M. Cohen2, Michelle Evans3, Prithvi Gudapati1, Leah R. Johnson2,4, Catherine A. Lippi5, Kerri Miazgowicz6, Courtney C. Murdock6, Jason R. Rohr2, Sadie J. Ryan7,5,8, Van M. Savage9,10, Marta S. Shocket1,11, Anna Stewart Ibarra12, Matthew B. Thomas13, Daniel P. Weikel14
1Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States of America
2Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA110 Tampa, FL, United States of America
3Odum School of Ecology, University of Georgia, Athens, GA, United States of America
4Department of Statistics, Virginia Polytechnic and State University, 250 Drillfield Drive Blacksburg, VA, United States of America
5Department of Geography, University of Florida, Turlington Hall, Gainesville, FL, United States of America
6Center for Tropical and Emerging Global Disease, Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, United States of America
7Center for Global Health and Translational Science, Department of Microbiology and Immunology, Weiskotten Hall, SUNY Upstate Medical University, Syracuse, NY, United States of America
8School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, Private Bag X01, Scottsville, KwaZulu Natal, South Africa
9Department of Ecology and Evolutionary Biology, University of California Los Angeles and Department of Biomathematics, University of California Los Angeles, Los Angeles, CA, United States of America
10Santa Fe Institute, Santa Fe, NM, United States of America
11Department of Biology, Indiana University, Jordan Hall 142, Bloomington, IN, United States of America
12Center for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
13Department of Entomology and Center for Infectious Disease Dynamics, Penn State University, 112 Merkle Lab, University Park, PA, United States of America
14Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, United States of America

Tóm tắt

Từ khóa


Tài liệu tham khảo

OJ Brady, 2012, Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLOS Negl Trop Dis, 6, e1760, 10.1371/journal.pntd.0001760

S Bhatt, 2013, The global distribution and burden of dengue, Nature, 496, 504, 10.1038/nature12060

SA Rasmussen, 2016, Zika virus and birth defects—reviewing the evidence for causality, N Engl J Med, 374, 1981, 10.1056/NEJMsr1604338

TW Scott, 2012, Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission, Trends Parasitol, 28, 114, 10.1016/j.pt.2012.01.001

JP Messina, 2016, Mapping global environmental suitability for Zika virus, eLife, 5, e15272, 10.7554/eLife.15272

K Magori, 2009, Skeeter Buster: A stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLOS Negl Trop Dis, 3, e508, 10.1371/journal.pntd.0000508

MA Johansson, 2014, Nowcasting the spread of chikungunya virus in the Americas, PLoS ONE, 9, e104915, 10.1371/journal.pone.0104915

TA Perkins, 2015, Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the Americas, PLoS Curr, 7

CW Morin, 2015, Meteorologically driven simulations of dengue epidemics in San Juan, PR, PLoS Negl Trop Dis, 9, e0004002, 10.1371/journal.pntd.0004002

Zhang Q, Sun K, Chinazzi M, Pastore-Piontti A, Dean NE, Rojas DP, et al. Projected spread of Zika virus in the Americas. bioRxiv. 2016; 066456.

AI Dell, 2011, Systematic variation in the temperature dependence of physiological and ecological traits, Proc Natl Acad Sci, 108, 10591, 10.1073/pnas.1015178108

EA Mordecai, 2013, Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol Lett, 16, 22, 10.1111/ele.12015

DA Focks, 1993, Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development, J Med Entomol, 30, 1003, 10.1093/jmedent/30.6.1003

HM Yang, 2009, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol Infect, 137, 1188, 10.1017/S0950268809002040

L Rueda, 1990, Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae), J Med Entomol, 27, 892, 10.1093/jmedent/27.5.892

W Tun-Lin, 2000, Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia, Med Vet Entomol, 14, 31, 10.1046/j.1365-2915.2000.00207.x

K Kamimura, 2002, Effect of temperature on the development of Aedes aegypti and Aedes albopictus, Med Entomol Zool, 53, 53, 10.7601/mez.53.53_1

L Eisen, 2014, The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins, J Med Entomol, 51, 496, 10.1603/ME13214

H Delatte, 2009, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean, J Med Entomol, 46, 33, 10.1603/033.046.0105

EJ Muturi, 2011, Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae), J Med Entomol, 48, 243, 10.1603/ME10017

BW Alto, 2001, Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory, J Med Entomol, 38, 548, 10.1603/0022-2585-38.4.548

CJ Westbrook, 2010, Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus, Vector-Borne Zoonotic Dis, 10, 241, 10.1089/vbz.2009.0035

H Briegel, 2001, Aedes albopictus (Diptera: Culicidae): Physiological aspects of development and reproduction, J Med Entomol, 38, 566, 10.1603/0022-2585-38.4.566

DC Calado, 2002, Influência da temperatura sobre a longevidade, fecundidade e atividade hematofágica de Aedes (Stegomyia) albopictus Skuse, 1894 (Diptera, Culicidae) sob condições de laboratório, Rev Bras Entomol, 46, 93, 10.1590/S0085-56262002000100011

EB Beserra, 2009, Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae), Iheringia Sér Zool

CJ Westbrook, 2010, Larval ecology and adult vector competence of invasive mosquitoes Aedes albopictus and Aedes aegypti for Chikungunya virus

J Couret, 2014, Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae), PLoS ONE, 9, e87468, 10.1371/journal.pone.0087468

Ezeakacha N. Environmental impacts and carry-over effects in complex life cycles: the role of different life history stages. Dissertation. 2015; Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://aquila.usm.edu/dissertations/190" xlink:type="simple">http://aquila.usm.edu/dissertations/190</ext-link>

H-J Teng, 2000, Development and Survival of Immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the Laboratory: Effects of Density, Food, and Competition on Response to Temperature, J Med Entomol, 37, 40, 10.1603/0022-2585-37.1.40

S Wiwatanaratanabutr, 2006, Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus, Med Vet Entomol, 20, 300, 10.1111/j.1365-2915.2006.00640.x

F-Z Xiao, 2014, The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus, Arch Virol, 159, 3053, 10.1007/s00705-014-2051-1

DM Watts, 1987, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am J Trop Med Hyg, 36, 143, 10.4269/ajtmh.1987.36.143

DM McLean, 1974, Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures, Can J Microbiol, 20, 255, 10.1139/m74-040

LB Carrington, 2013, Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti, PLoS Negl Trop Dis, 7, e2190, 10.1371/journal.pntd.0002190

NC Davis, 1932, The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes aegypti, Am J Epidemiol, 16, 163, 10.1093/oxfordjournals.aje.a117853

DM McLean, 1975, Dengue virus transmission by mosquitoes incubated at low temperatures, Mosq News

DA Focks, 1995, A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results, Am J Trop Med Hyg, 53, 489, 10.4269/ajtmh.1995.53.489

BW Alto, 2013, Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages, Am J Trop Med Hyg, 88, 497, 10.4269/ajtmh.12-0421

Mordecai EA. Model code, data, and output for “Detecting the impact of temperature on transmission of Zika, dengue and chikungunya using mechanistic models.” [Internet]. 2017.

AM Stewart Ibarra, 2013, Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control, PLoS ONE, 8, e78263, 10.1371/journal.pone.0078263

OJ Brady, 2014, Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission, Parasit Vectors, 7, 338, 10.1186/1756-3305-7-338

CJ Carlson, 2016, An ecological assessment of the pandemic threat of Zika virus, PLoS Negl Trop Dis, 10, e0004968, 10.1371/journal.pntd.0004968

AM Samy, 2016, Mapping the global geographic potential of Zika virus spread, Mem Inst Oswaldo Cruz, 111, 559, 10.1590/0074-02760160149

A Wesolowski, 2015, Impact of human mobility on the emergence of dengue epidemics in Pakistan, Proc Natl Acad Sci

J Liu-Helmersson, 2014, Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential, PLoS ONE, 9, e89783, 10.1371/journal.pone.0089783

C Caminade, 2017, Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015, Proc Natl Acad Sci, 114, 119, 10.1073/pnas.1614303114

II Bogoch, 2016, Anticipating the international spread of Zika virus from Brazil, The Lancet, 387, 335, 10.1016/S0140-6736(16)00080-5

J-F Briere, 1999, A novel rate model of temperature-dependent development for arthropods, Environ Entomol, 28, 22, 10.1093/ee/28.1.22

J Li, 2011, The Failure of <italic>R</italic>0, Comput Math Methods Med, 2011, e527610, 10.1155/2011/527610

L Lambrechts, 2011, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc Natl Acad Sci, 108, 7460, 10.1073/pnas.1101377108

Rohatgi A. WebPlotDigitizer [Internet]. 2015. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arohatgi.info/WebPlotDigitizer" xlink:type="simple">http://arohatgi.info/WebPlotDigitizer</ext-link>

LR Johnson, 2015, Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach, Ecology, 96, 203, 10.1890/13-1964.1

2014, R: A Language and Environment for Statistical Computing

Plummer M. rjags: Bayesian Graphical Models using MCMC [Internet]. 2016. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=rjags" xlink:type="simple">http://CRAN.R-project.org/package=rjags</ext-link>

Plummer M, Best N, Cowles K, Vines K. CODA: Convergence Diagnosis and Output Analysis for MCMC. 2006.

WJ Parton, 1981, A model for diurnal variation in soil and air temperature, Agric Meteorol, 23, 205, 10.1016/0002-1571(81)90105-9

KP Paaijmans, 2013, Temperature variation makes ectotherms more sensitive to climate change, Glob Change Biol, 19, 2373, 10.1111/gcb.12240

DA Vasseur, 2014, Increased temperature variation poses a greater risk to species than climate warming, Proc R Soc Lond B Biol Sci, 281, 20132612, 10.1098/rspb.2013.2612

Narasimhan R. weatherData: Get Weather Data from the Web [Internet]. 2014. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/weatherData/index.html" xlink:type="simple">https://cran.r-project.org/web/packages/weatherData/index.html</ext-link>

Breheny P, Burchett W. visreg: Visualization of Regression Models [Internet]. 2016. Available: <ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://cran.r-project.org/web/packages/visreg/index.html" xlink:type="simple">https://cran.r-project.org/web/packages/visreg/index.html</ext-link>