Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phát hiện sự thay đổi trong hồ sơ Conway–Maxwell–Poisson bằng biểu đồ CUSUM và EWMA dựa trên phần dư deviance dưới điều kiện đa cộng tuyến
Statistische Hefte - Trang 1-47 - 2023
Tóm tắt
Theo dõi các hồ sơ với phản hồi đếm là một tình huống phổ biến trong các quá trình công nghiệp và đối với một quá trình phân phối đếm, mô hình hồi quy Conway–Maxwell–Poisson (COM-Poisson) cho ra kết quả tốt hơn đối với các biến đếm phân tán thiếu và quá mức. Trong nghiên cứu này, chúng tôi đề xuất các biểu đồ CUSUM và EWMA dựa trên các phần dư deviance thu được từ mô hình COM-Poisson, được điều chỉnh bởi các ước lượng PCR và lớp r–k. Chúng tôi đã tiến hành một nghiên cứu mô phỏng để đánh giá hiệu ứng của các dạng thay đổi bổ sung và nhân với nhiều kích thước thay đổi khác nhau, số lượng biến dự đoán và nhiều mức độ phân tán, cũng như so sánh hiệu suất của các biểu đồ điều khiển được đề xuất với các biểu đồ điều khiển trong tài liệu về độ dài chu kỳ trung bình và độ lệch chuẩn của độ dài chu kỳ. Hơn nữa, một tập dữ liệu thực tế cũng được phân tích để xem hiệu suất của các biểu đồ điều khiển mới được đề xuất. Kết quả cho thấy sự vượt trội của các biểu đồ điều khiển mới được đề xuất so với một số đối thủ, bao gồm các biểu đồ điều khiển CUSUM và EWMA dựa trên ML, PCR và phần dư deviance ridge trong sự hiện diện của đa cộng tuyến.
Từ khóa
#Conway–Maxwell–Poisson #hồi quy #CUSUM #EWMA #phần dư deviance #phân tán #đa cộng tuyếnTài liệu tham khảo
Abbasi A, Özkale MR (2021) The r–k class estimator in generalized linear models applicable with sim and empirical study using a Poisson and gamma responses. Hacettepe J Math Stat 50(2):594–611
Abdella GM, Kim J, Al-Khalifa KN, Hamouda AM (2019) Penalized Conway–Maxwell–Poisson regression for modelling dispersed discrete data: the case study of motor vehicle crash frequency. Safety Sci 120:157–163
Aguilera AM, Escabias M, Valderrama MJ (2006) Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput Stat Data Anal 50(8):1905–1924
Algamal ZY (2018) A new method for choosing the biasing parameter in ridge estimator for generalized linear model. Chemom Intell Lab Syst 183:96–101
Alkhamisi MA, Shukur G (2007) A Monte Carlo study of recent ridge parameters. Commun Stat Sim Comput 36(3):535–547
Alkhamisi M, Khalaf G, Shukur G (2006) Some modifications for choosing ridge parameters. Commun Stat Theory Methods 35(11):2005–2020
Amiri A, Koosha M, Azhdari A (2011) Profile monitoring for Poisson responses. In: 2011 IEEE intern. conference on industrial engineering and engineering management, IEEE. pp 1481–1484
Asgari A, Amiri A, Niaki ST (2014) A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response. Int J Adv Manuf Technol 72(9–12):1243–1256
Baye MR, Parker DF (1984) Combining ridge and principal component regression: a money demand illustration. Commun Stat Theory Methods 13(2):197–205
Boatwright P, Borle S, Kadane JB (2003) A model of the joint distribution of purchase quantity and timing. J Am Stat Assoc 98(463):564–572
Cao Q, Zanni-Merk C, Samet A, de Beuvron FDB, Reich C (2020) Using rule quality measures for rule base refinement in knowledge-based predictive maintenance systems. Cybern Syst 51(2):161–176
Conway RW, Maxwell WL (1962) A queuing model with state dependent service rates. J Ind Eng 12(2):132–136
Dobson AJ (2002) An introduction to generalized linear models, 2nd edn. CRC Press, London
Francis RA, Geedipally SR, Guikema SD, Dhavala SS, Lord D, LaRocca S (2012) Characterizing the performance of the Conway–Maxwell–Poisson generalized linear model. Risk Anal 32(1):167–183
Guikema SD, Goffelt JP (2008) A flexible count data regression model for risk analysis. Risk Anal 28(1):213–223
Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67
Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge regression: some sim.s. Commun Stat Theory Methods 4(2):105–123
Iqbal A, Mahmood T, Ali Z, Riaz M (2022) On enhanced GLM-based monitoring: an application to additive manufacturing process. Symmetry 14(1):122
Jamal A, Mahmood T, Riaz M, Al-Ahmadi HM (2021) GLM-based flexible monitoring methods: an application to real-time highway safety surveillance. Symmetry 13(2):362
Jolliffe IT (2002) Principal components analysis, 2nd edn. Springer, New York
Kibria BG (2003) Performance of some new ridge regression estimators. Commun Stat Sim Comput 32(2):419–435
Kibria BG, Månsson K, Shukur G (2012) Performance of some logistic ridge regression estimators. Comput Econ 40(4):401–414
Kim JK, Han YS, Lee JS (2017) Particle swarm optimization-deep belief network-based rare class prediction model for highly class imbalance problem. Concurrency Comput 29(11):e4128
Kurtoğlu F, Özkale MR (2016) Liu estimation in generalized linear models: application on gamma distributed response variable. Stat Papers 57(4):911–928
Kwon JH, Kim EJ (2020) Failure prediction model using iterative feature selection for industrial internet of things. Symmetry 12(3):454
Lawless J, Wang P (1976) A simulation study of ridge and other regression estimators. Commun Stat Theory Methods 5(4):307–323
Li B, Zhang H, He J (2020) Some characterizations and properties of COM-Poisson random variables. Commun Stat Theory Methods 49(6):1311–1329
Lord D, Guikema SD, Geedipally SR (2008) Application of the Conway–Maxwell–Poisson generalized linear model for analyzing motor vehicle crashes. Accident Anal Prev 40(3):1123–1134
Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–12
Maleki MR, Castagliola P, Amiri A, Khoo MB (2019) The effect of parameter estimation on phase II monitoring of Poisson regression profiles. Commun Stat 48(7):1964–1978
Mammadova U, Özkale MR (2021) Comparison of deviance and ridge deviance residual-based control charts for monitoring Poisson profiles. Commun Stat. https://doi.org/10.1080/03610918.2020.1870693
Mammadova U, Özkale MR (2021) Profile monitoring for count data using Poisson and Conway–Maxwell–Poisson regression-based control charts under multicollinearity problem. J Comput Appl Math 388:113275
Månsson K, Shukur G (2011) A Poisson ridge regression estimator. Econ Model 28(4):1475–1481
Marcondes Filho D, Sant’Anna AMO (2016) Principal component regression-based control charts for monitoring count data. Int J Adv Manuf Technol 85(5):1565–1574
Marx BD, Smith EP (1990) Principal component estimation for generalized linear regression. Biometrika 77(1):23–31
McCann M, Johnston A (2008) UCI machine learning repository
McDonald GC, Galarneau DI (1975) A Monte Carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70(350):407–416
Moldovan D, Cioara T, Anghel I, Salomie I (2017) Machine learning for sensor-based manufacturing processes. In: 2017 13th IEEE international conference on intelligent computer communication and processing (ICCP), pp 147–154. IEEE
Moldovan D, Chifu V, Pop C, Cioara T, Anghel I, Salomie I (2018) Chicken swarm optimization and deep learning for manufacturing processes. In: 2018 17th RoEduNet conference: networking in education and research (RoEduNet), pp. 1–6. IEEE
Montgomery DC (2020) Introduction to statistical quality control, 6th edn. Wiley, New Jersey
Nelder JA, Wedderburn RW (1972) Generalized linear models. J R Stat Soc 135(3):370–384
Özkale MR (2019) The r–d class estimator in generalized linear models: applications on gamma, Poisson and binomial distributed responses. J Stat Comput Sim 89(4):615–640
Özkale MR, Arıcan E (2016) A new biased estimator in logistic regression model. Stat Papers 50(2):233–253
Page ES (1954) Continuous inspection schemes. Biometrika 41(1/22):100–115
Park K, Kim JM, Jung D (2018) GLM-based stat control r-charts for dispersed count data with multicollinearity between input variables. Qual Reliab Eng Int 34(6):1103–1109
Park K, Jung D, Kim JM (2020) Control charts based on randomized quantile residuals. Appl Stoc Models Bus Ind 36(4):716–729
Qi D, Wang Z, Zi X, Li Z (2016) Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts. Comput Ind Eng 94:178–187
Rao GS, Aslam M, Rasheed U, Jun CH (2020) Mixed EWMA-CUSUM chart for COM-Poisson distribution. J Stat Manag Syst 23(3):511–527
Rasheed HA, Sadik NJ, Algamal ZY (2022) Jackknifed liu-type estimator in the Conway–Maxwell–Poisson regression model. Int J Nonlinear Anal Appl 13(1):3153–3168
Roberts S (1959) Control chart tests based on geometric moving averages. Technometrics 42(1):97–101
Sami F, Amin M, Akram MN, Butt MM, Ashraf B (2022) A modified one parameter liu estimator for Conway–Maxwell–Poisson response model. J Stat Comput Simul 1:1–19
Sami F, Amin M, Butt MM (2022) On the ridge estimation of the Conway–Maxwell–Poisson regression model with multicollinearity: methods and applications. Concurrency Comput 34(1):e6477
Sellers KF, Shmueli G (2010) A flexible regression model for count data. Ann Appl Stat 4(2):943–961
Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. J R Stat Soc 54(1):127–142
Skinner KR, Montgomery DC, Runger GC (2003) Process monitoring for multiple count data using generalized linear model-based control charts. Int J Prod Res 41(6):1167–1180
Smith EP, Marx BD (1990) Ill-conditioned information matrices, generalized linear models and estimation of the effects of acid rain. Environmetrics 1(1):57–71
Takahashi Y, Asahara M, Shudo K(2019). A framework for model search across multiple machine learning implementations. In: 2019 15th International Conference on eScience (eScience), pp 331–338. IEEE
Wen H, Liu L, Yan X (2021) Regression-adjusted Poisson EWMA control chart. Qual Reliab Eng Int 37(5):1956–1964
Wood SN (2017) Generalized additive models: an introduction with R. Chapman & Hall/CRC Press, Florida
Zaldivar C (2018) On the performance of some Poisson ridge regression estimators. Master’s thesis, Florida International University, Miami, Florida