Phát hiện không có lai ghép tự nhiên và dự đoán sự chồng lấn phạm vi ở Saccharina angustata và Saccharina japonica

Springer Science and Business Media LLC - Tập 33 - Trang 693-702 - 2020
Jie Zhang1,2, Norishige Yotsukura3, Alexander Jueterbock4, Zi-Min Hu1,2, Jorge Assis5, Chikako Nagasato6, Jianting Yao1,2, Delin Duan1,2
1Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
3Field Science Centre for Northern Biosphere, Hokkaido University, Sapporo, Japan
4Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
5Centre of Marine Sciences, University of Algarve, Faro, Portugal
6Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, Japan

Tóm tắt

Lai ghép tự nhiên có thể đóng một vai trò quan trọng trong các quá trình tiến hoá và ảnh hưởng đến sự đa dạng thích nghi và hình thành loài của các loài tảo nâu. Tuy nhiên, hiện tượng này vẫn chưa được biết đến ở các loại tảo Saccharina. Saccharina angustata và hai biến thể của Saccharina japonica (S. japonica var. japonica và S. japonica var. diabolica) phần nào chồng lấn phân bố dọc theo bờ biển Thái Bình Dương của Hokkaido, điều này làm cho chúng trở thành một hệ mô hình tốt để nghiên cứu lai ghép và sự giao thoa giữa các loài thuộc chi Saccharina. Dựa trên 13 vi vệ tinh hạt nhân có độ biến thiên cao và một dấu hiệu ti thể, chúng tôi đã đánh giá mức độ đa dạng gen của S. angustata lần đầu tiên và các quần thể từ Muroran đến Shiranuka (phần tây bờ biển Thái Bình Dương ở Hokkaido) thể hiện độ đa dạng gen cao nhất. Độ đa dạng gen của S. japonica cao hơn ở S. japonica var. japonica so với S. japonica var. diabolica. Có sự phân hóa gen đáng kể (FST > 0.25, p < 0.05) giữa S. japonica và S. angustata dựa trên cả hai dấu hiệu. Hơn nữa, có sự kết nối gen kém và lai ghép giữa các loài Saccharina có liên quan chặt chẽ này hạn chế. Các mô hình sinh thái học về môi trường dự đoán sự mở rộng về phía bắc của cả S. japonica và S. angustata dưới các kịch bản khí hậu trong tương lai và sự chồng lấn phạm vi giữa hai loài dọc theo bờ biển Biển Okhotsk ở bán đảo Kamchatka. Sự lai ghép giữa các loài và độ đa dạng gen giữa các tảo này cung cấp những hiểu biết cho việc lựa chọn và nuôi trồng tảo cũng như các chiến lược bảo tồn trong tương lai của nguồn giống hoang dã.

Từ khóa

#Lai ghép tự nhiên #Saccharina angustata #Saccharina japonica #Đa dạng gen #Mô hình sinh thái #Biển Okhotsk #Nuôi trồng tảo

Tài liệu tham khảo

Acevedo P, Jimenezvalverde A, Meloferreira J, Real R, Alves PC (2012) Parapatric species and the implications for climate change studies: a case study on hares in Europe. Glob Chang Biol 18:1509–1519 Akaike H (1974) A new look at the statistical model identification. IEEE Transact Automat Contr 19:716–723 Alberto F, Massa SI, Manent P, Diazalmela E, Arnaudhaond S, Duarte CM, Serrao EA (2008) Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J Biogeogr 35:1279–1294 Amanda MS, Gary WS (2015) Evidence for the introduction of the Asian red alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales, Rhodophyta) in the Northwest Atlantic. Mol Ecol 24:5927–5937 Ardehed A, Johansson D, Sundqvist L, Schagerstrom E, Zagrodzka Z, Kovaltchouk NA, Bergstrom L, Kautsky L, Rafajlovic M, Pereyra RT, Johannesson K (2016) Divergence within and among seaweed siblings (Fucus vesiculosus and F. radicans) in the Baltic Sea. PLoS One 11:e0161266 Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford Assis J, Berecibar E, Claro B, Alberto F, Reed D, Raimondi P, Serrao EA (2017) Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Sci Rep 7:44348 Assis J, Araujo MB, Serrao EA (2018a) Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob Chang Biol 24:e55–e66 Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA, De Clerck O (2018b) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284 Balakirev ES, Krupnova TN, Ayala FJ (2012) DNA variation in the phenotypically-diverse brown alga Saccharina japonica. BMC Plant Biol 12:108 Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48 Bergstrom L, Tatarenkov A, Johannesson K, Jonsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp nov (Fucales, Phaeophyceae) in the brackish Baltic Sea. J Phycol 41:1025–1038 Bertocci I, Araújo R, Oliveira P, Pinto IS (2015) Potential effects of kelp species on local fisheries. J Appl Ecol 52:e0161266 Binks RM, Byrne M, McMahon K, Pitt G, Murray K, Evans RD (2019) Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers Distrib 25:298–309 Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279 Borlongan IA, Maeno Y, Kozono J, Endo H, Shimada S, Nishihara GN, Terada R (2019) Photosynthetic performance of Saccharina angustata (Laminariales, Phaeophyceae) at the southern boundary of subarctic kelp distribution in Japan. Phycologia 58:300–309 Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026 Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge pp 1029-1136 Coyer JA, Hoarau G, Stam WT, Olsen JL (2007) Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus distichus and F. serratus. J Evol Biol 16:3606–3616 Druehl LD, Collins JD, Lane CE, Saunders GW (2005) An evaluation of methods used to assess intergeneric hybridization in kelp using Pacific Laminariales (Phaeophyceae). J Phycol 41:250–262 Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361 Engel CR, Daguin C, Serrão EA (2010) Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14:2033–2046 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620 Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567 Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49 Fithian W, Elith J, Hastie T, Keith DA (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6:424–438 Franco JN, Tuya F, Bertocci I, Laura R, Brezo M, Isabel SP, Arenas F (2018) The ‘golden kelp’ Laminaria ochroleuca under global change: integrating multiple eco-hysiological responses with species distribution models. J Ecol 106:47–58 Gao X, Endo H, Agatsuma Y (2014) Effect of increased seawater temperature on biomass, growth, and maturation of Saccharina japonica near its southern limit in northern Japan. J Appl Phycol 27:1263–1270 Gao X, Endo H, Nagaki M, Agatsuma Y (2017) Interactive effects of nutrient availability and temperature on growth and survival of different size classes of Saccharina japonica (Laminariales, Phaeophyceae). Phycologia 56:253–260 Gonzalez A, Beltran J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B (2012) Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol 48:1153–1165 Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486 Hall AT (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 95-98 Hasegawa YJ (1962) An ecological study of Laminaria angustata Kjellman on the coast of Hidaka Prov., Hokkaido. Bull Hokkaido Reg Fish Lab 24:116–138 Hijmans RJ (2015) R package raster: Geographic data analysis and modeling,version 2.3–40. http://CRAN.R-project.org/package=raster. Accessed 16 June 2020 Hoarau G, Coyer JA, Giesbers MC, Jueterbock A, Olsen JL (2015) Pre-zygotic isolation in the macroalgal genus Fucus from four contact zones spanning 100-10 000 years: a tale of reinforcement? R Soc Open Sci 2:140538 Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world's marine ecosystems. Science 328:1523–1528 Hu ZM, Zhang J, Lopez-Bautista J, Duan DL (2013) Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar Biol 160:1407–1414 Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806 Jimenez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21:498–507 Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373 Jueterbock A, Smolina I, Coyer JA, Hoarau G (2016) The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecol Evol 6:1712–1724 Kawashima S (2012) Morphological and taxonomy of the Laminariaceous algae in cold water area of Japan (in Japanese). Oya Nisan Publisher, pp 159–206 Kozhenkova SI (2009) Retrospective analysis of the marine flora of Vostok Bay, Sea of Japan. Russ J Mar Biol 35:263–278 Kraan S, Guiry MD (2000) Molecular and morphological character inheritance in hybrids of Alaria esculenta and A. praelonga (Alariaceae, Phaeophyceae). Phycologia 39:554–559 Krosby M, Wilsey CB, Mcguire JL, Duggan JM, Nogeire TM, Heinrichs JA, Tewksbury JJ, Lawler JJ (2015) Climate-induced range overlap among closely related species. Nat Clim Change 5:883–886 Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512 Li JJ, Hu ZM, Gao X, Sun ZM, Choi HG, Duan DL, Endo H (2017) Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north-West Pacific. J Biogeogr 44:230–242 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452 Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638 Neiva J, Pearson GA, Valero M, Serrão EA (2012) Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides. J Biogeogr 39:1167–1178 Neiva J, Assis J, Fernandes F, Pearson GA, Serrao EA, Maggs C (2014) Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. J Biogeogr 41:1137–1148 Neiva J, Serrao EA, Anderson L, Raimondi PT, Martins N, Gouveia L, Paulino C, Coelho NC, Miller KA, Reed DC, Ladah LB, Pearson GA (2017) Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evol Biol 17:30 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295 Pereyra RT, Huenchunir C, Johansson D, Forslund H, Kautsky L, Jonsson PR, Johannesson K (2013) Parallel speciation or long-distance dispersal? Lessons from seaweeds (Fucus) in the Baltic Sea. J Evol Biol 26:1727–1737 Phillips SJ, Dudik MS (2004) A maximum entropy approach to species distribution modeling. Proceedings of the 21 International Conference on Machine Learning 83:655-662 Phillips SJ, Anderson RP, Dudik M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 Raybaud V, Beaugrand G, Goberville E, Delebecq G, Destombe C, Valero M, Davoult D, Morin P, Gevaert F (2013) Decline in kelp in West Europe and climate. PLoS One 8:e66044 Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138 Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106 Sbrocco E (2014) Paleo-MARSPEC : gridded ocean climate layers for the mid- Holocene and Last Glacial Maximum. Ecology 95:1710 Selivanova ON, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the Far-Eastern seas of Russia on the basis of molecular-phylogenetic data. Russ J Mar Biol 33:278–289 Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64:479–498 Sudo K, Watanabe K, Yotsukura N, Nakaoka M (2020) Predictions of kelp distribution shifts along the northern coast of Japan. Ecol Res 35:47–60 Takao S, Kumagai NH, Yamano H, Fujii M, Yamanaka Y (2015) Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios. Ecol Evol 5:213–223 Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752 Tegner MJ, Dayton PK (2000) Ecosystem effects of fishing in kelp forest communities. ICES J Mar Sci 57:579–589 Terada R, Abe M, Abe T, Aoki M, Dazai A, Endo H, Kamiya M, Kawai H, Kurashima A, Motomura T, Murase N, Sakanishi Y, Shimabukuro H, Tanaka J, Yoshida G, Aoki M (2019) Japan's nationwide long-term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: ten-year overview and future perspectives. Phycol Res. https://doi.org/10.1111/pre.12395 Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380 Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281 Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538 Wallace AL, Klein AS, Mathieson AC (2004) Determining the affinities of salt marsh fucoids using microsatellite markers: evidence of hybridization and introgression between two species of Fucus (Phaeophyta) in a Maine estuary. J Phycol 40:1013–1027 Wang XL, Yao JT, Zhang J, Duan DL (2020) Status of genetic studies and breeding of Saccharina japonica in China. J Oceanol Limnol 38:1064–1079 Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342 Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers Distrib 20:334–343 Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191 Yotsukura N, Shimizu T, Katayama T, Druehl LD (2010a) Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J Appl Phycol 22:243–251 Yotsukura N, Nagai K, Kimura H, Morimoto K (2010b) Seasonal changes in proteomic profiles of Japanese kelp: Saccharina japonica (Laminariales, Phaeophyceae). J Appl Phycol 22:443–451 Zhang QS, Tang XX, Cong YZ, Qu SC, Luo SJ, Yang GP (2007) Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J Appl Phycol 19:303–311 Zhang J, Yao JT, Sun ZM, Fu G, Galanin DA, Nagasato C, Motomura T, Hu ZM, Duan DL (2015) Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 15:237 Zhang J, Wang XL, Yao JT, Li QY, Liu FL, Yotsukura N, Krupnova TN, Duan DL (2017) Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China. Sci Rep 7:42158 Zhang J, Yao JT, Hu ZM, Jueterbock A, Yotsukura N, Krupnova TN, Nagasato C, Duan DL (2019a) Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol Appl 12:791–803 Zhang J, Wang XL, Yao JT, Yotsukura N, Duan DL (2019b) Screening of polymorphic microsatellites and their application for Saccharina angustata and Saccharina longissima population genetic analysis. J Appl Phycol 31:3295–3301