Detecting hotspots of interactions between vegetation greenness and terrestrial water storage using satellite observations
Tài liệu tham khảo
Ahmed, 2014, The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa, Earth Sci. Rev., 136, 289, 10.1016/j.earscirev.2014.05.009
Andrew, 2017, Estimation of GRACE water storage components by temporal decomposition, J. Hydrol., 552, 341, 10.1016/j.jhydrol.2017.06.016
Andrew, 2017, Large-scale vegetation responses to terrestrial moisture storage changes, Hydrol. Earth Syst. Sci., 21, 4469, 10.5194/hess-21-4469-2017
Asoka, 2017, Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India, Nat. Geosci., 10, 109, 10.1038/ngeo2869
Campos, 2013, Ecosystem resilience despite large-scale altered hydroclimatic conditions, Nature, 494, 349, 10.1038/nature11836
Chen, 2013, Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon, J. Geophys. Res. Biogeosci., 118, 495, 10.1002/jgrg.20046
Chen, 2013, Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau, J. Geophys. Res.-Atmos., 118, 4466, 10.1002/jgrd.50301
Chen, 2014, Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades, Remote Sens. Environ., 144, 28, 10.1016/j.rse.2013.12.018
Chen, 2014, Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia, Remote Sens. Environ., 140, 330, 10.1016/j.rse.2013.08.022
Christian, 2010, Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329, 834, 10.1126/science.1184984
Deng, 2017, Influences of recent climate change and human activities on water storage variations in Central Asia, J. Hydrol., 544, 46, 10.1016/j.jhydrol.2016.11.006
Donohue, 2009, Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981-2006, Glob. Chang. Biol., 15, 1025, 10.1111/j.1365-2486.2008.01746.x
Felfelani, 2017, Natural and human-induced terrestrial water storage change: a global analysis using hydrological models and GRACE, J. Hydrol., 553, 105, 10.1016/j.jhydrol.2017.07.048
Feng, 2016, Revegetation in China's loess plateau is approaching sustainable water resource limits, Nat. Clim. Chang., 6, 1019, 10.1038/nclimate3092
Fensholt, 2012, Evaluation of earth observation based global long term vegetation trends — comparing GIMMS and MODIS global NDVI time series, Remote Sens. Environ., 119, 131, 10.1016/j.rse.2011.12.015
Findell, 1997, An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois, Water Resour. Res., 33, 725, 10.1029/96WR03756
Gao, 2008, Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model, Glob. Planet. Chang., 62, 195, 10.1016/j.gloplacha.2008.02.002
Gerten, 2004, Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model, J. Hydrol., 286, 249, 10.1016/j.jhydrol.2003.09.029
Good, 2017, A Mesic maximum in biological water use demarcates biome sensitivity to aridity shifts, Nat. Ecol. Evol., 1, 1883, 10.1038/s41559-017-0371-8
Granger, 1969, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 424, 10.2307/1912791
Green, 2017, Regionally strong feedbacks between the atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410, 10.1038/ngeo2957
Heimann, 2008, Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 451, 289, 10.1038/nature06591
Hiemstra, 1994, Testing for linear and nonlinear granger causality in the stock price- volume relation, J. Financ., 49, 1639
Holben, 1986, Characteristics of maximum-value composite images from temporal Avhrr data, Int. J. Remote Sens., 7, 1417, 10.1080/01431168608948945
Hou, 2015, Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China, Remote Sens., 7, 11105, 10.3390/rs70911105
Huete, 1997, Use of vegetation indices in forested regions: issues of linearity and saturation, 1966
Humphrey, 2018, Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage, Nature, 560, 628, 10.1038/s41586-018-0424-4
Jin, 2017, Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau, Sci. Rep., 7, 8191, 10.1038/s41598-017-08477-x
Joiner, 2018, Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales, Remote Sens. Environ., 219, 339, 10.1016/j.rse.2018.10.020
de Jong, 2013, Shifts in global vegetation activity trends, Remote Sens., 5, 1117, 10.3390/rs5031117
Kendall, 1948
Kendall, 1975
Koirala, 2017, Global distribution of groundwater-vegetation spatial covariation: global groundwater-vegetation relations, Geophys. Res. Lett., 44, 4134, 10.1002/2017GL072885
Landerer, 2012, Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, 10.1029/2011WR011453
Liu, 2016, Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield, Environ. Res. Lett., 11, 10.1088/1748-9326/11/9/094010
Long, 2013, GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas, Geophys. Res. Lett., 40, 3395, 10.1002/grl.50655
Long, 2015, Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin, Remote Sens. Environ., 168, 177, 10.1016/j.rse.2015.07.003
Mann, 1945, Nonparametric tests against trend, Econometrica, 245, 10.2307/1907187
Martens, 2017, GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903, 10.5194/gmd-10-1903-2017
Miralles, 2011, Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453, 10.5194/hess-15-453-2011
Morton, 2014, Amazon forests maintain consistent canopy structure and greenness during the dry season, Nature, 506, 121, 10.1038/nature13006
Nemani, 2003, Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 1560, 10.1126/science.1082750
Nguyen, 2018, Global precipitation trends across spatial scales using satellite observations, Bull. Am. Meteorol. Soc., 99, 689, 10.1175/BAMS-D-17-0065.1
Nicholson, 1994, The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall, Remote Sens. Environ., 50, 107, 10.1016/0034-4257(94)90038-8
Nicolaishaw, 2017, A drought event composite analysis using satellite remote-sensing based soil moisture, Remote Sens. Environ., 203, 216, 10.1016/j.rse.2017.06.014
Pan, 2017, Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China, Geophys. Res. Lett., 44, 190, 10.1002/2016GL071287
Papagiannopoulou, 2017, Vegetation anomalies caused by antecedent precipitation in most of the world, Environ. Res. Lett., 12, 10.1088/1748-9326/aa7145
Pei, 2017, Seasonal divergence in the sensitivity of evapotranspiration to climate and vegetation growth in the Yellow River Basin, China, J. Geophys. Res. Biogeosci., 122, 103, 10.1002/2016JG003648
Peng, 2011, Recent change of vegetation growth trend in China, Environ. Res. Lett., 6, 10.1088/1748-9326/6/4/044027
Pinzon, 2014, A non-stationary 1981–2012 AVHRR NDVI 3g time series, Remote Sens., 6, 6929, 10.3390/rs6086929
Reager, 2016, A decade of sea level rise slowed by climate-driven hydrology, Science, 351, 699, 10.1126/science.aad8386
Richey, 2015, Quantifying renewable groundwater stress with GRACE, Water Resour. Res., 51, 5217, 10.1002/2015WR017349
Rodell, 2004, The global land data assimilation system, Bull. Am. Meteorol. Soc., 85, 381, 10.1175/BAMS-85-3-381
Save, 2016, High resolution CSR GRACE RL05 mascons, J. Geophys. Res. Solid Earth, 121, 7547, 10.1002/2016JB013007
Scanlon, 2018, Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, Proc. Natl. Acad. Sci. U. S. A., 115, E1080, 10.1073/pnas.1704665115
Seddon, 2016, Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531, 229, 10.1038/nature16986
Soni, 2015, Diagnosing land water storage variations in Major Indian River basins using GRACE observations, Glob. Planet. Chang., 133, 263, 10.1016/j.gloplacha.2015.09.007
Sugihara, 2012, Detecting causality in complex ecosystems, Science, 338, 496, 10.1126/science.1227079
Sun, 2016, Century-scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans, Geophys. Res. Lett., 43, 6528, 10.1002/2016GL069628
Tapley, 2004, GRACE measurements of mass variability in the Earth system, Science, 305, 503, 10.1126/science.1099192
Thomas, 2014, A GRACE- based water storage deficit approach for hydrological drought characterization, Geophys. Res. Lett., 41, 1537, 10.1002/2014GL059323
Tian, 2015, Evaluating temporal consistency of long-term global NDVI datasets for trend analysis, Remote Sens. Environ., 163, 326, 10.1016/j.rse.2015.03.031
Tucker, 2005, An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, Int. J. Remote Sens., 26, 4485, 10.1080/01431160500168686
Velicogna, 2015, Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia, Environ. Res. Lett., 10
Vicente-Serrano, 2013, Response of vegetation to drought time-scales across global land biomes, Proc. Natl. Acad. Sci. U. S. A., 110, 52, 10.1073/pnas.1207068110
Wang, 2018, Response of ecosystem productivity to dry/wet conditions indicated by different drought indices, Sci. Total Environ., 612, 347, 10.1016/j.scitotenv.2017.08.212
Wang, 2018, Recent global decline in endorheic basin water storages, Nat. Geosci., 11, 926, 10.1038/s41561-018-0265-7
Watkins, 2015, Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap Mascons, J. Geophys. Res. Solid Earth, 120, 2648, 10.1002/2014JB011547
Wei, 2017, Revisiting the contribution of transpiration to global terrestrial evapotranspiration, Geophys. Res. Lett., 44, 2792, 10.1002/2016GL072235
Wei, 2018, Vegetation cover - another dominant factor in determining global water resources in forested regions, Glob. Chang. Biol., 24, 786, 10.1111/gcb.13983
Wiese, D. (2015). GRACE Monthly Global Water Mass Grids NETCDF RELEASE 5.0. Ver. 5.0. PO. DAAC, CA, USA. Dataset accessed [2017–06-01] at doi:https://doi.org/10.5067/TEMSC-OCL05.
Wiese, 2016, Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490, 10.1002/2016WR019344
Wu, 2015, Time-lag effects of global vegetation responses to climate change, Glob. Chang. Biol., 21, 3520, 10.1111/gcb.12945
Xie, 2018, GRACE-based terrestrial water storage in Northwest China: changes and causes, Remote Sens., 10, 1163, 10.3390/rs10071163
Xu, 2014, Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin, J. Hydrol., 510, 530, 10.1016/j.jhydrol.2013.12.052
Yang, 2014, GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia, J. Geophys. Res. Biogeosci., 119, 2245, 10.1002/2014JG002670
Yang, 2017, Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements, Int. J. Remote Sens., 38, 5688, 10.1080/01431161.2017.1346400
Zeng, 2018, Impact of earth greening on the terrestrial water cycle, J. Clim., 31, 2633, 10.1175/JCLI-D-17-0236.1
Zhou, 2014, Widespread decline of Congo rainforest greenness in the past decade, Nature, 509, 86, 10.1038/nature13265