Detecting and Treating Cancer with Nanotechnology
Tóm tắt
Từ khóa
Tài liệu tham khảo
NCI Nanotechnology Initiative. Cancer nanotechnology plan: a strategic initiative to transform clinical oncology and basic research through the directed application of nanotechnology. 2004 Jul [online]. Available from URL: http://nano.cancer.gov/about_alliance/cancer_nanotechnology_plan.pdf [Accessed 2008 Jan 23]
Agrawal A, Xing Y, Gao X, et al. Quantum dots. In: Vo-Dinh T, editor. Nanotechnology in biology: methods, devices, and applications. Boca Raton (FL): CRC Press, 2007: 1–15
Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 2006; 18(15): 1953–64
Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30
Sonvico F, Dubernet C, Colombo P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Design 2005; 11(16): 2091–105
Wang H, Brandl DW, Nordlander P, et al. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007; 40(1): 53–62
Duguet E, Vasseur S, Mornet S, et al. Magnetic nanoparticles and their applications in medicine. Nanomed 2006; 1(2): 157–68
Corot C, Robert P, Idee J-M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471–504
Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev 2006; 106(3): 1105–36
Guldi DM, Rahman GMA, Sgobba V, et al. Multifunctional molecular carbon materials: from fullerenes to carbon nanotubes. Chem Soc Rev 2006; 35(5): 471–87
Hartschuh A, Pedrosa HN, Peterson J, et al. Single carbon nanotube optical spectroscopy. Chem Phys Chem 2005; 6(4): 577–82
Green M. Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 2005; 24: 3002–11
Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90(12): 2555–60
Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Phys Chem 1984; 80(9): 4403–9
Brachez Jr M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6
Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1): 47–51
Shepard JRE. Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 2006; 78(8): 2478–86
Levy M, Cater SF, Ellington AD. Quantum-dot aptamer beacons for the detection of proteins. Chem Bio Chem 2005; 6(12): 2163–6
Chan P, Yuen T, Ruf F, et al. Method for multiplex cellular detection of mRN As using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005; 33(18): e161/1–8
Ho Y-P, Kung MC, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 2005; 5(9): 1693–7
Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007; 7(6): 1711–6
So M-K, Xu C, Loening AM, et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24(3): 339–43
Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6(4): 669–76
Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal Anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67(3): 1138–44
Yu X, Chen L, Li K, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 2007; 12(1): 014008/1–5
Gao X, Chung LWK, Nie S. Quantum dots for in vivo molecular and cellular imaging. Meth Mol Biol 2007; 374 (Quantum Dots): 135–45
Toms SA, Daneshvar H, Muhammad O, et al. Optical detection of brain tumors using quantum dots. Proceedings of the SPIE; 2005 Nov. In: Analoui M, Dunn DA, editors. Optical methods in drag discovery and development. Bellingham (WA): SPIE, 2005 [online]. Available from URL: http://adsabs.harvard.edu/abs/2005SPIE.6009..125T [Accessed 2008 Feb 6]
Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016–8
Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconj Chem 2004; 15(1): 79–86
Akerman ME, Chan WCW, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21
Grecco HE, Lidke KA, Heintzmann R, et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Micro Res Tech 2004; 65(4/5): 169–79
Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 2005; 102(21): 7583–8
Pinaud F, King D, Moore H-P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS Nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126(19): 6115–23
Babu P, Sinha S, Surolia A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconj Chem 2007; 18(1): 146–51
Sun X-L, Cui W, Haller C, et al. Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chem Bio Chem 2004; 5(11): 1593–6
Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969–76
Goldman ER, Clapp AR, Anderson GP, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76(3): 684–8
Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41–6
Zhu L, Ang S, Liu W-T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 2004; 70(1): 597–8
Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007 Oct; 25(10): 1165–70
Jackson JB, Halas NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001; 105(14): 2743–6
Luo Y, Lee SK, Hofmeister H, et al. Pt nanoshell tubes by template wetting. Nano Lett 2004; 4(1): 143–7
Wang J, Zhu Y, Wu Y, et al. Fabrication, assembly and magnetic properties of nickel hollow nanoballs. Mod Phys Lett B 2006; 20(10): 549–55
Sershen SR, Westcott SL, Halas NJ, et al. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett 2002; 80(24): 4609–11
Oldenburg SJ, Averitt RD, Westcott SL, et al. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2,3,4): 243–7
Mohamed MB, Ismail KZ, Link S, et al. Thermal reshaping of gold nanorods in micelles. J Phys Chem B 1998; 102(47): 9370–4
Durr NJ, Larson T, Smith DK, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007; 7(4): 941–5
Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Mater Lett 2006; 60(15): 1896–900
Chen J, Saeki F, Wiley BJ, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5(3): 473–7
Hao F, Nehl CL, Hafner JH, et al. Plasmon resonances of a gold nanostar. Nano Lett 2007; 7(3): 729–32
Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238–48
Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007 Jul; 7(7): 1929–34
Copland JA, Eghtedari M, Popov VL, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 2004; 6(5): 341–9
Fu K, Sun J, Lin AWH, et al. Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells. Curr Nanosci 2007; 3(2): 167–70
Loo C, Hirsch L, Lee M-H, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Lett 2005; 30(9): 1012–4
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549–54
Overgaard K, Overgaard J. Investigations on the possibility of a thermic tumour therapy: I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer 1972; 8(1): 65–78
Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167–81
Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51(3): 293–8
Tartaj P, Morales MdP, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R182–97
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterial 2005; 26(18): 3995–4021
Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Coll Inter Sci 1996; 177(2): 490–4
Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline medium: yield and particle size control. J Chimie Physique Phys Chimie Biol 1987; 84(7–8): 967–73
Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000; 403(6765): 65–7
Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002; 23(7): 1553–61
Pileni M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2003; 2(3): 145–50
Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 2003; 13(6): 1266–76
Gruttner C, Teller J. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magn Magn Mater 1999; 194(1–3): 8–15
Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R198–206
Ji X, Shao R, Elliott AM, et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J Phys Chem C 2007; 111(17): 6245–51
Merbach AE, Toth E, editors. The chemistry of contrast agents in medical magnetic resonance imaging. New York: Wiley, 2001
Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161–75
Taupitz M, Wagner S, Schnorr J, et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39(7): 394–405
Clement O, Siauve N, Cuenod CA, et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 1998; 9(3): 167–82
Reimer P, Marx C, Rummeny EJ, et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 1997; 7(6): 945–9
McLachlan SJ, Morris MR, Lucas MA, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 1994; 4(3): 301–7
Li W, Tutton S, Vu AT, et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 2005; 21(1): 46–52
Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998; 8(7): 1198–204
Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 1995; 30(10): 604–10
Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005; 93(1): 131–6
Funovics MA, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004; 22(6): 843–50
Tsourkas A, Shinde-Patil VR, Kelly KA, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconj Chem 2005; 16(3): 576–81
Josephson L, Tung C-H, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconj Chem 1999; 10(2): 186–91
Zhao M, Kircher Moritz F, Josephson L, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconj Chem 2002; 13(4): 840–4
Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 2006; 78(3): 550–7
Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233(3): 781–9
Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003; 228(2): 480–7
Leuschner C, Kumar CSSR, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99(2): 163–76
Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252(1–3): 370–4
Jordan A, Rheinlaender T, Waldoefner N, et al. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanopart Res 2003; 5(5–6): 597–600
Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 2007; 23(3): 315–23
Cognet L, Tsyboulski DA, Rocha J-DR, et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 2007; 316(5830): 1465–8
Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004; 126(48): 15638–9
Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006; 103(50): 18882–6
Leeuw TK, Reith RM, Simonette RA, et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 2007; 7(9): 2650–4
Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005; 102(33): 11600–5
Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007; 110(12): 2654–65
Bolskar RD, Alford JM, Benedetto AF, et al. Development of Gd@C60 based MRI contrast enhancing agents [abstract no. 0986]. Proceedings of the Electrochemistry Society; 2002 Mar 12–17; Philadelphia (PA) [online]. Available from URL: http://www.electrochem.org/dl/ma/201/pdfs/0986.pdf [Accessed 2008 Jan 22]
Bolskar RD, Benedetto AF, Husebo LO, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C6o[C(COOH)2]io as a MRI contrast agent. J Am Chem Soc 2003; 125(18): 5471–8
Laus S, Sitharaman B, Toth E, et al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]l0. J Am Chem Soc 2005; 127(26): 9368–9
Laus S, Sitharaman B, Toth E, et al. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J Phys Chem C 2007; 111(15): 5633–9
Sitharaman B, Bolskar RD, Rusakova I, et al. Gd@C60[C(COOH)2]l0 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 2004; 4(12): 2373–8
Toth E, Bolskar RD, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005; 127(2): 799–805
Sitharaman B, Tran LA, Pham QP, et al. Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Molec Imag 2007; 2(3): 139–46
Fatouros PP, Corwin FD, Chen Z-J, et al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006; 240(3): 756–64
Rancan F, Helmreich M, Moelich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconj Chem 2007; 18(4): 1078–86
Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C6o) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006; 28: 3004–6
Sitharaman B, Kissell KR, Hartman KB, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 2005; 31: 3915–7
Sitharaman B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed 2006; 1(3): 291–5
Hartman KB, Wilson LJ. Carbon nanostructures as a new, high-performance platform for MR molecular imaging. In: Chan WCW, editor. Bio-applications of nanoparticles. Austin (TX): Landes Biosciences, 2007
Gu Z, Peng H, Hauge RH, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002; 2(9): 1009–13
Hartman KB, Laus S, Bolskar RD, et al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. Epub 2008 Jan 24
Baselga J. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer 2001; 37Suppl. 4: S16–22
Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20(2): 131–6
Labianca R, La Verde N, Garassino MC. Development and clinical indications of cetuximab. Int J Biol Markers 2007; 22(1 Suppl. 4): S40–6
Morgillo F, Bareschino MA, Bianco R, et al. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation 2007 Nov; 75(9): 788–99
Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001; 38(1): 17–23
Hudis CA. Trastuzumab: mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1): 39–51
Meric-Bernstam F, Hung M-C. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res 2006; 12(21): 6326–30
Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 2007 Oct 11; 26(46): 6577–92
Simonds HM, Miles D. Adjuvant treatment of breast cancer: impact of monoclonal antibody therapy directed against the HER2 receptor. Expert Opin Biol Ther 2007; 7(4): 487–91
Inwards DJ, Cilley JC, Winter JN. Radioimmunotherapeutic strategies in autologous hematopoietic stem-cell transplantation for malignant lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 669–84
Liebenguth P, Vogt Temple S. Radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol Nurs 2006; 22(4): 257–66
Schaefer-Cutillo J, Friedberg JW, Fisher RI. Novel concepts in radioimmunotherapy for non-Hodgkin’s lymphoma. Oncology 2007; 21(2): 203–12; discussion 214, 217, 221
Witzig TE. Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 655–68
Fenton C, Perry CM. Gemtuzumab ozogamicin: a review of its use in acute myeloid leukaemia. Drugs 2005; 65(16): 2405–27
Maslak PG, Jurcic JG, Scheinberg DA. Monoclonal antibody therapy of APL. Curr Top Microbiol Immun 2007; 313: 205–19
O’Brien S, Albitar M, Giles FJ. Monoclonal antibodies in the treatment of leukemia. Curr Molec Med 2005; 5(7): 663–75
Pagano L, Fianchi L, Caira M, et al. The role of gemtuzumab ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007; 26(25): 3679–90
Tallman MS. New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology Am Soc Hematol Educ Program 2005: 143–50
Tsimberidou A-M, Giles FJ, Estey E, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006; 132(4): 398–409
Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9): 1137–46
McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180–9
Mackeyev YA, Marks JW, Rosenblum MG, et al. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J Phys Chem B 2005; 109(12): 5482–4
Hartman KB, Hamlin DK, Wilbur DS, et al. 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 2007; 3(9): 1496–9
Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chem Int Ed 2007; 46(12): 2023–7
Jiang H, Zhang T, Sun X. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. J Surg Res 2005; 126(1): 48–54
Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13(4): 283–7
Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6(4): 587–91
Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334(4): 1121–6
Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620–30
Park JH, Kwon S, Nam J-O, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid for RGD peptide delivery. J Control Release 2004; 95(3): 579–88
Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421–9
Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63
Cui F-D, Tao A-J, Cun D-M, et al. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 2007; 96(2): 421–7
Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999; 16(10): 1576–81
Gupta AK, Berry C, Gupta M, et al. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2003; 2(4): 255–61
Leobandung W, Ichikawa H, Fukumori Y, et al. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 2002; 80(1–3): 357–63
Ma Z, Lim TM, Lim L-Y. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1–2): 271–80
Ma Z, Yeoh HH, Lim L-Y. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 2002; 91(6): 1396–404
Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm 2005; 288(2): 289–93
Pan Y, Li Y-J, Zhao H-Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1–2): 139–47
Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392–7
Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1–2): 147–54
Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001; 218(1–2): 75–80
Pan Y-L, Cai J-Y, Qin L, et al. Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. Acta Biochim Biophys Sin 2006; 38(9): 646–52
Alexiou C, Jurgons R, Seliger C, et al. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res 2007; 27(4A): 2019–22
Fahmy TM, Fong PM, Park J, et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9(2): E171–80
Gan ZF, Jiang JS, Yang Y, et al. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 2008 Jan; 84(1): 10–8
Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39
McCarthy JR, Kelly KA, Sun EY, et al. Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007; 2(2): 153–67
Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12(22): 6677–86
Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 2007; 6(4): 277–88
Wang J-M, Xiao B-L, Zheng J-W, et al. Effect of targeted magnetic nanoparticles containing 5-FU on expression of bcl-2, bax and caspase 3 in nude mice with transplanted human liver cancer. World J Gastroenterol 2007; 13(23): 3171–5
Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 2007; 3(6): 838–50