Detailed kinetic mechanism of the multistep oxidation and combustion of isopentane and isohexane

Russian Journal of Physical Chemistry B - Tập 9 - Trang 933-939 - 2016
V. Ya. Basevich1, A. A. Belyaev1, S. N. Medvedev1, V. S. Posvyanskii1, S. M. Frolov1
1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

A detailed kinetic mechanism was developed for the oxidation and combustion of isopentane (2-methylbutane) and isohexane (2-methylpentane), which describes both high-temperature reactions and a multistep process in the region of low temperatures. These hydrocarbons were chosen because they, together with isobutane, are the first members in the homologous series of isomerized alkanes and a higher member of this series—isooctane (2,2,4-trimethylpentane)—exhibited multistep self-ignition in experiments; in this case, the above isomers can be important intermediate products. The process of the multistep self-ignition of the above hydrocarbons under specific conditions occurs in three sequential steps (in the form of cold and blue flames and hot explosion) characteristic of normal alkanes. The calculations of self-ignition and flame propagation were performed by the developed mechanism; the results of the calculations were compared with the experimental data and their satisfactory qualitative and quantitative agreement was obtained.

Tài liệu tham khảo

A. S. Sokolik, SelfIgnition, Flame and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian]. D. Downs, J. S. Street, and R. W. Wheeler, Fuel 32, 270 (1953). A. Burcat, E. Olchanski, and C. Sokolinski, Combust. Sci. Technol. 147, 1 (1999). M. A. Oehlschlaeger, D. F. Davidson, J. T. Herbon, and R. K. Hanson, Int. J. Chem. Kinet. 36, 67 (2004). M. Ribaucour, R. Minetti, L. R. Sochet, et al., Proc. Combust. Inst. 28, 1671 (2000). H. Machrafi and S. Cavadias, Combust. Flame 155, 557 (2008). V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 7, 161 (2013). V. Ya. Basevich, A. A. Belyaev, S. N. Medvedev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 9, 268 (2015). S. M. Frolov, A. E. Barykin, and A. A. Borisov, Khim. Fiz. 23 (3), 17 (2004). A. A. Belyaev and V. S. Posvyanskii, Algoritmy Programmy, Inform. Byull. Gos. Fonda Algoritm. Progr. SSSR, No. 3, 35 (1985). J. T. Farrell, R. J. Johnston, and I. P. Androulakis, SAE Paper No. 2004012936 (Society of Automotive Engi-neers, 2004), pp. 1–22. G. I. Gibbs and H. F. Calcote, J. Chem. Eng. Data 4, 226 (1959). M. Gerstein, O. Levine, and E. L. Wong, J. Am. Chem. Soc. 73, pp. 418–422 (1951). M. P. Halsted, D. B. Pye, and C. P. Quinn, Combust. Flame 22, 89 (1974). V. Ya. Basevich, A. A. Belyaev, A. N. Gots, V. S. Posvyanskii, I. V. Semenov, S. M. Frolov, and F. S. Frolov, Goren, Vzryv 5 (5), 167 (2012). CHEMKINPRO Release 15083 (17.04.2009).