Detailed assessment of X-ray induced structural perturbation in a crystalline state protein
Tài liệu tham khảo
Berglund, 2002, The catalytic pathway of horseradish peroxidase at high resolution, Nature, 417, 463, 10.1038/417463a
Borek, 2007, The many faces of radiation-induced changes, J. Synchrotron Radiat., 14, 24, 10.1107/S0909049506046589
Brunger, 1998, Crystallography and NMR system: a new software suite for macromolecular structure determination, Acta Crystallogr., D54, 905
Burmeister, 2000, Structural changes in a cryo-cooled protein crystal owing to radiation damage, Acta Crystallogr., D56, 328
Carter, 2001, High potential iron sulfur proteins, 602
Carter, 1972, A comparison of Fe4S4∗ clusters in high-potential iron protein and in ferredoxin, Proc. Natl. Acad. Sci. USA., 69, 3526, 10.1073/pnas.69.12.3526
Carugo, 2005, When X-rays modify the protein structure: radiation damage at work, Trends. Biochem. Sci., 30, 213, 10.1016/j.tibs.2005.02.009
Dauter, 2003, Protein structures at atomic resolution, Methods Enzymol., 368, 288, 10.1016/S0076-6879(03)68016-X
DeLano, 2002
Dey, 2007, Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin, Science, 318, 1464, 10.1126/science.1147753
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr., D60, 2126
Fukuyama, 2001, Ferredoxins containing one [4Fe–4S] center, 543
Garman, 2003, ‘Cool’ crystals: macromolecular cryocrystallography and radiation damage, Curr. Opin. Struct. Biol., 13, 545, 10.1016/j.sbi.2003.09.013
Garman, 2006, Cryocooling and radiation damage in macromolecular crystallography, Acta Crystallogr., D62, 32
Henderson, 1990, Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction, Proc. R. Soc. Lond. B Biol. Sci., 241, 6, 10.1098/rspb.1990.0057
Hendrickson, 1976, Radiation damage in protein crystallography, J. Mol. Biol., 106, 889, 10.1016/0022-2836(76)90271-0
Kamiya, 1995, Fundamental design of the high energy undulator pilot beamline for macromolecular crystallography at the SPring-8, Rev. Sci. Inst., 66, 1703, 10.1063/1.1145888
Kamiya, 1998, First results from the bio-crystallography beamline at SPring-8, RIKEN Rev., 18, 29
Kawamoto, 2001, The bio-crystallography beamline (BL41XU) at SPring-8, Nucl. Instr. Meth. A, 467–468, 1375, 10.1016/S0168-9002(01)00672-6
Kmetko, 2006, Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures, Acta Crystallogr., D62, 1030
Kuzay, 2001, X-ray beam/biomaterial thermal interactions in third-generation synchrotron sources, Acta Crystallogr., D57, 69
Laskowski, 1993, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 26, 283, 10.1107/S0021889892009944
Leiros, 2001, Atomic resolution structures of trypsin provide insight into structural radiation damage, Acta Crystallogr., D57, 488
Leiros, 2006, Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection?, Acta Crystallogr., D62, 125
Liu, 2002, Ultrahigh-resolution structure of high-potential iron-sulfur protein from Thermochromatium tepidum, Acta Crystallogr., D58, 1085
Longhi, 1998, Messages from ultrahigh resolution crystal structures, Curr. Opin. Struct. Biol., 8, 730, 10.1016/S0959-440X(98)80093-6
Matsui, 2002, Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin, J. Mol. Biol., 324, 469, 10.1016/S0022-2836(02)01110-5
Meents, 2007, Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15K: a systematic study, Acta Crystallogr., D63, 302
Meents, 2009, A new aspect of specific radiation damage: hydrogen abstraction from organic molecules, J. Synchrotron Radiat., 16, 183, 10.1107/S0909049509002192
Merritt, 1999, Expanding the model: anisotropic displacement parameters in protein structure refinement, Acta Crystallogr., D55, 1109
Merritt, 1997, Raster3D: photorealistic molecular graphics, Methods Enzymol., 277, 505, 10.1016/S0076-6879(97)77028-9
Mhaisekar, 2005, Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams, J. Synchrotron Radiat., 12, 318, 10.1107/S0909049505003250
Moulis, 1993, Primary structure of Chromatium tepidum high-potential iron-sulfur protein in relation to thermal denaturation, Arch. Biochem. Biophys., 305, 186, 10.1006/abbi.1993.1409
Murray, 2004, X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose, J. Appl. Cryst., 37, 513, 10.1107/S0021889804010660
Murray, 2005, Parameters affecting the X-ray dose absorbed by macromolecular crystals, J. Synchrotron Radiat., 12, 268, 10.1107/S0909049505003262
Nave, 2005, Towards an understanding of radiation damage in cryocooled macromolecular crystals, J. Synchrotron Radiat., 12, 257, 10.1107/S0909049505007132
Nogi, 2000, Crystallization and preliminary crystallographic analysis of the high-potential iron-sulfur protein from Thermochromatium tepidum, Acta Crystallogr., D56, 656
Nogi, 2000, Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer, Proc. Natl. Acad. Sci. USA, 97, 13561, 10.1073/pnas.240224997
Otwinowski, 1997, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 307, 10.1016/S0076-6879(97)76066-X
Owen, 2006, Experimental determination of the radiation dose limit for cryocooled protein crystals, Proc. Natl. Acad. Sci. USA, 103, 4912, 10.1073/pnas.0600973103
Ravelli, 2002, The ‘fingerprint’ that X-rays can leave on structures, Structure, 8, 315, 10.1016/S0969-2126(00)00109-X
Ravelli, 2002, Unit-cell volume change as a metric of radiation damage in crystals of macromolecules, J. Synchrotron Radiat., 9, 355, 10.1107/S0909049502014541
Schmidt, 2002, Veni, vidi, vici – atomic resolution unravelling the mysteries of protein function, Curr. Opin. Struct. Biol., 12, 698, 10.1016/S0959-440X(02)00394-9
Schmidt, 2007, From atoms to proteins, Cell. Mol. Life Sci., 64, 1959, 10.1007/s00018-007-7195-7
Sheldrick, 1997, SHELXL: high-resolution refinement, Methods Enzymol., 277, 319, 10.1016/S0076-6879(97)77018-6
Shimizu, 2007, Dose dependence of radiation damage for protein crystals studied at various X-ray energies, J. Synchrotron Radiat., 14, 4, 10.1107/S0909049506049296
Sliz, 2003, How does radiation damage in protein crystals depend on X-ray dose?, Structure, 11, 13, 10.1016/S0969-2126(02)00910-3
Snell, 2007, Non-invasive measurement of X-ray beam heating on a surrogate crystal sample, J. Synchrotron Radiat., 14, 109, 10.1107/S090904950604605X
Southworth-Davies, 2007, Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography, Structure, 15, 1531, 10.1016/j.str.2007.10.013
Sygusch, 1988, Sequential radiation damage in protein crystallography, Acta Crystallogr., A44, 443, 10.1107/S0108767388001394
Takeda, 2004, Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix, J. Mol. Biol., 341, 1023, 10.1016/j.jmb.2004.06.080
Teng, 2000, Primary radiation damage of protein crystals by an intense synchrotron X-ray beam, J. Synchrotron Radiat., 7, 313, 10.1107/S0909049500008694
Vrielink, 2003, Sub-Angstrom resolution enzyme X-ray structures: is seeing believing?, Curr. Opin. Struct. Biol., 13, 709, 10.1016/j.sbi.2003.10.012
Weik, 2001, Specific chemical and structural damage to proteins produced by synchrotron radiation, Proc. Natl. Acad. Sci. USA, 97, 623, 10.1073/pnas.97.2.623
Weik, 2002, Evidence for the formation of disulfide radicals in protein crystals upon X-ray irradiation, J. Synchrotron Radiat., 9, 342, 10.1107/S0909049502014589
Weiss, 2005, On the influence of the incident photon energy on the radiation damage in crystalline biological samples, J. Synchrotron Radiat., 12, 304, 10.1107/S0909049505003328