Nghiên cứu tách lưu huỳnh khỏi nhiên liệu lỏng thông qua vật liệu xốp sửa đổi nickel từ Pongamia pinnata

Z. H. Zaidi1, Laxmi Gayatri Sorokhaibam1
1Environmental Remediation Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology Nagpur, Maharashtra, 440010, India

Tóm tắt

Tóm tắt

Một loại vật liệu hấp phụ cacbon gốc sinh khối mới đã được phát triển từ Pongamia pinnata và hiệu ứng của việc sửa đổi nickel kết hợp với sự hấp phụ và siêu âm đã được nghiên cứu. Thí nghiệm hấp phụ của dầu mẫu chứa 50 ppm dibenzothiophene trong cyclohexane cho thấy khả năng hấp phụ tối đa lần lượt là 8.11, 13.36 và 17.15 mg·g−1 đối với carbon thương mại DARCO, vật liệu hấp phụ PP chưa xử lý, và vật liệu hấp phụ Ni@PP được sửa đổi bởi nickel, với thời gian cần thiết để đạt được trạng thái cân bằng là nhanh nhất ở Ni@PP (120 phút). Hiệu ứng đáng kể của siêu âm là đạt được động học nhanh hơn, với ~ 96-98% lượng loại bỏ đạt được chỉ trong 30 phút. Ngoài ra, các vật liệu hấp phụ phát triển có diện tích bề mặt riêng rất tốt, lần lượt là 915 và 677 m2·g−1 cho PP và Ni@PP. Nghiên cứu ảnh hưởng của nồng độ lưu huỳnh ban đầu cao hơn (200 ppm) cho thấy sự quan trọng của việc sửa đổi Ni, với khả năng hấp phụ rất cao 66.18 mg·g−1 cho Ni@PP so với 30.90 mg·g−1 cho PP và 13.18 mg·g−1 cho DARCO. Ni@PP cũng hiệu quả cho việc loại bỏ đồng thời các phân đoạn lưu huỳnh khó tách hơn từ các hệ nhiên liệu mẫu đa thành phần và thể hiện khả năng tái sinh tốt đến chu kỳ thứ tư hoặc nhiều hơn. Ước tính chi phí cho thấy rằng các vật liệu hấp phụ phát triển tương đối rẻ hơn gấp mười lần so với carbon thương mại, trong khi nghiên cứu giường cố định chỉ ra thời gian bứt phá là 250 phút và 270 phút cho PP và Ni@PP, tương ứng.

Tóm tắt hình ảnh

Từ khóa


Tài liệu tham khảo

MK Nazal M Khaled MA Atieh 2015 The nature and kinetics of the adsorption of dibenzothiophene in model diesel fuel on carbonaceous materials loaded with aluminum oxide particles Arab J Chem https://doi.org/10.1016/j.arabjc.2015.12.003

SM Anisuzzaman S Abang D Krishnaiah M Razlan 2017 Adsorptive desulfurization of model fuel by activated oil palm shell Indian J Chem Technol 24 206 212

MK Nazal M Khaled MA Atieh 2015 The nature and kinetics of the adsorption of dibenzothiophene in model diesel fuel on carbonaceous materials loaded with aluminum oxide particles Arab. J Chem

NB Suryawanshi VM Bhandari LG Sorokhaibam VV Ranade 2017 Developing techno-economically sustainable methodologies for deep desulfurization using hydrodynamic cavitation Fuel 210 482 490 https://doi.org/10.1016/j.fuel.2017.08.106

HF Mohd Zaid FK Chong MI Abdul Mutalib 2017 Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent Fuel 192 10 17 https://doi.org/10.1016/j.fuel.2016.11.112

C Song X Ma 2003 New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization Appl Catal B Environ 41 207 238 https://doi.org/10.1016/S0926-3373(02)00212-6

I Mochida K-H Choi 2004 An overview of hydrodesulfurization and hydrodenitrogenation J Jpn Pet Inst 47 145 163 https://doi.org/10.1627/jpi.47.145

FS Mjalli OU Ahmed T Al-Wahaibi 2014 Deep oxidative desulfurization of liquid fuels Rev Chem Eng 30 337 378 https://doi.org/10.1515/revce-2014-0001

IBW Gunam K Yamamura I Nengah Sujaya 2013 Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b J Microbiol Biotechnol 23 473 482 https://doi.org/10.4014/jmb.1207.07070

Dharaskar SA, Wasewar KL, Varma MN, et al (2014) Extractive desulfurization of liquid fuels by energy efficient green thiazolium based ionic liquids. In: Industrial and Engineering Chemistry Research. pp 19845–19854

M Oloruntoba D Aribike S Nwachukwu 2016 A review on bio- and adsorptive desulfurization of diesel fuel J Sci Res Rep 11 1 6 https://doi.org/10.9734/JSRR/2016/26909

P Sikarwar UKA Kumar V Gosu V Subbaramaiah 2018 Synergetic effect of cobalt-incorporated acid-activated gac for adsorptive desulfurization of DBT under mild conditions J Chem Eng Data 63 2975 2985 https://doi.org/10.1021/acs.jced.8b00249

H Kuwahara 1973 Desulfurization of heavy oil Chemeconengng Rev 5 35 40 https://doi.org/10.1007/s13203-012-0006-6

Rezakazemi M, Zhang Z (2018) Desulfurization materials. In: comprehensive energy systems. pp 944–979

B Liu Y Zhu S Liu J Mao 2012 Adsorption equilibrium of thiophenic sulfur compounds on the Cu-BTC metal-organic framework J Chem Eng Data 57 1326 1330 https://doi.org/10.1021/je300130s

PK Halder N Paul MRA Beg 2014 Prospect of pongamia pinnata (Karanja) in Bangladesh: a sustainable source of liquid fuel J Renew Energy 2014 1 12 https://doi.org/10.1155/2014/647324

M Mamatha 2012 Kinetics and mechanism for adsorption of lead in aqueous and industrial effluent from pongamia pinnata tree bark IOSR J Environ Sci Toxicol Food Technol 2 01 09 https://doi.org/10.9790/2402-0230109

M Mamatha HB Aravinda ET Puttaiah S Manjappa 2013 Factors and kinetics involved in adsorption of copper from aqueous and waste water onto pongamia pinnata Int J Innov Res Sci Eng Technol 2 1091 1098

S Sivamani V Prince Immanuel 2008 Batch adsorption studies for chromium removal J Environ Sci Eng 50 11 16

ML Meshram DH Lataye 2014 Adsorption of methylene blue dye onto activated carbon prepared from pongamia pinnata seed Int J Eng Res Technol 3 1216 1220

J Liao Y Wang L Chang W Bao 2015 RSC Advances desulfurization performance in hydrocarbons RSC Adv 5 62763 62771 https://doi.org/10.1039/C5RA06430A

YN Prajapati N Verma 2017 Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers: Effects of adsorbate size and adsorbent texture Fuel 189 186 194 https://doi.org/10.1016/j.fuel.2016.10.044

W Dai N Tian C Liu 2017 (Zn, Ni, Cu)-BTC functionalized with phosphotungstic acid for adsorptive desulfurization in the presence of benzene and ketone Energy Fuels 31 13502 13508 https://doi.org/10.1021/acs.energyfuels.7b02851

VV Chopade N Pune P Vishal A Tekade 2008 Pongamia pinnata : phytochemical constituents, traditional uses and pharmacological properties: a review Int J Green Pharm. https://doi.org/10.4103/0973-8258.41173

H Zengin G Kalayci G Zengin 2014 Effect of sonication in the preparation of activated carbon particles on adsorption performance Sep Sci Technol 49 1807 1816 https://doi.org/10.1080/01496395.2014.902383

LG Sorokhaibam VM Bhandari MS Salvi 2015 Development of newer adsorbents: activated carbons derived from carbonized cassia fistula Ind Eng Chem Res 54 11844 11857 https://doi.org/10.1021/acs.iecr.5b02945

JB Bhasarkar PK Dikshit VS Moholkar 2015 Ultrasound assisted biodesulfurization of liquid fuel using free and immobilized cells of Rhodococcus rhodochrous MTCC 3552: a mechanistic investigation Bioresour Technol 187 369 378 https://doi.org/10.1016/j.biortech.2015.03.102

K Brungesh B Nagabhushana R Raveendra 2015 Adsorption of Cr(VI) from aqueous solution onto a mesoporous carbonaceous material prepared from naturally occurring pongamia pinnata seeds J Environ Anal Toxicol. https://doi.org/10.4172/2161-0525.1000330

GI Danmaliki TA Saleh 2016 Effects of bimetallic Fe−Ce nanoparticles on the desulfurization of thiophenes using activated carbon Chem Eng J https://doi.org/10.1016/j.cej.2016.08.143

N Khadhri SM Khames El M Ben Mosbah Y Moussaoui 2019 Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.11.020

GK Poongavanam V Ramalingam 2019 International journal of thermal sciences characteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycol Int J Therm Sci 136 15 32 https://doi.org/10.1016/j.ijthermalsci.2018.10.007

JM Patterson Z Kortylewicz WT Smith 1984 Thermal degradation of sodium dodecyl sulfate J Agric Food Chem 32 782 784 https://doi.org/10.1021/jf00124a020

M Thommes K Kaneko AV Neimark 2015 Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl Chem 87 1051 1069 https://doi.org/10.1515/pac-2014-1117

H Uslu D Datta S Azizian 2016 Separation of chromium (VI) from its liquid solution using new montmorillonite supported with amine based solvent J Mol Liq 215 449 453 https://doi.org/10.1016/j.molliq.2016.01.023

SA Chaudhry Z Zaidi SI Siddiqui 2017 Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS ): modelling and process optimization J Mol Liq 229 230 240 https://doi.org/10.1016/j.molliq.2016.12.048

A Dada A Olaekan A Olatunya O Dada 2012 Langmuir, freundlich, temkin and dubinin–radushkevich isotherms studies of equilibrium sorption of Zn 2 + unto phosphoric acid modified rice husk IQSR J Appl Chem 3 38 45

J Xi M He C Lin 2011 Adsorption of antimony (III) and antimony (V) on bentonite: kinetics, thermodynamics and anion competition Microchem J 97 85 91 https://doi.org/10.1016/j.microc.2010.05.017

FBO Daoud S Kaddour T Sadoun 2010 Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies Coll Surf B Biointerfaces 75 93 99 https://doi.org/10.1016/j.colsurfb.2009.08.019

ESZZ El-Ashtoukhy NK Amin O Abdelwahab 2008 Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent Desalination 223 162 173 https://doi.org/10.1016/j.desal.2007.01.206

GE Boyd AW Adamson LS Myers 1947 The exchange adsorption of ions from aqueous solutions by organic zeolites II Kinetics J Am Chem Soc 69 2836 2848 https://doi.org/10.1021/ja01203a066

TA Khan M Nazir EA Khan 2013 Toxicological and environmental chemistry adsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studies Toxicol Environ Chem 95 919 931 https://doi.org/10.1080/02772248.2013.840369

GI Danmaliki TA Saleh AA Shamsuddeen 2016 Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon Chem Eng J https://doi.org/10.1016/j.cej.2016.10.141

T Fukunaga H Katsuno H Matsumoto 2003 Development of kerosene fuel processing system for PEFC Catal Today 84 197 200

X Ma M Sprague C Song 2005 Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications Ind Eng Chem Res 44 5768 5775 https://doi.org/10.1021/ie0492810

R Mahmoudi C Falamaki 2016 Ni 2 + -ion-exchanged dealuminated clinoptilolite: a superior adsorbent for deep desulfurization Fuel 173 277 284 https://doi.org/10.1016/j.fuel.2016.01.048

F Subhan BS Liu QL Zhang WS Wang 2012 Production of ultra-low-sulfur gasoline: AN equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents J Hazard Mater 239–240 370 380 https://doi.org/10.1016/j.jhazmat.2012.09.012

MS Mostafa MA Betiha AM Rabie 2018 New conduct in the adsorptive removal of sulfur compounds by new nickel-molybdenum adsorbent Ind Eng Chem Res 57 425 433 https://doi.org/10.1021/acs.iecr.7b03539

Y Yang J Li G Lv L Zhang 2018 Novel method to synthesize Ni 2 P/SBA-15 adsorbents for the adsorptive desulfurization of model diesel fuel J Alloys Compd 745 467 476 https://doi.org/10.1016/j.jallcom.2018.02.156

J Wang F Xu W Xie jie, 2009 The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y J Hazard Mater 163 538 543 https://doi.org/10.1016/j.jhazmat.2008.07.027

R Dehghan M Anbia 2017 Zeolites for adsorptive desulfurization from fuels: a review Fuel Process Technol 167 99 116 https://doi.org/10.1016/j.fuproc.2017.06.015

M Nainamalai M Palani B Soundarajan S AEJS, 2018 Chemical engineering and processing: process intensi fi cation decolorization of synthetic dye wastewater using packed bed electro-adsorption column Chem Eng Process Process Intensif 130 160 168 https://doi.org/10.1016/j.cep.2018.06.013

HC Thomas 1944 Heterogeneous ion exchange in a flowing system J Am Chem Soc 66 1664 1666 https://doi.org/10.1021/ja01238a017

E Yang C Yao Y Liu 2018 Bamboo-derived porous biochar for e ffi cient adsorption removal of dibenzothiophene from model fuel Fuel 211 121 129 https://doi.org/10.1016/j.fuel.2017.07.099