Designing safer lithium-based batteries with nonflammable electrolytes: A review

eScience - Tập 1 Số 2 - Trang 163-177 - 2021
Shichao Zhang1,2, Siyuan Li1,2, Yingying Lü1,2
1State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z

Winter, 2018, Before Li ion batteries, Chem. Rev., 118, 11433, 10.1021/acs.chemrev.8b00422

Whittingham, 2014, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 114, 11414, 10.1021/cr5003003

Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x

Li, 2020, Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed., 59, 14935, 10.1002/anie.202004853

Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013

Chen, 2021, A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards, J. Energy Chem., 59, 83, 10.1016/j.jechem.2020.10.017

Lyu, 2020, Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater., 31, 195, 10.1016/j.ensm.2020.06.042

Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 16114, 10.1038/nenergy.2016.114

Li, 2019, Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-Philic property enabling highly stable alkali metal batteries, Adv. Funct. Mater., 29, 1808847, 10.1002/adfm.201808847

Feng, 2020, Mitigating thermal runaway of lithium-ion batteries, Joule, 4, 743, 10.1016/j.joule.2020.02.010

Liu, 2018, Thermal runaway of lithium-ion batteries without internal short circuit, Joule, 2, 2047, 10.1016/j.joule.2018.06.015

Li, 2021, Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials, Nano Energy, 85, 105878, 10.1016/j.nanoen.2021.105878

Xu, 2020, Revealing the multilevel thermal safety of lithium batteries, Energy Storage Mater., 31, 72, 10.1016/j.ensm.2020.06.004

Ren, 2021, Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater., 34, 563, 10.1016/j.ensm.2020.10.020

Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w

Tan, 2021, Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects, Adv. Funct. Mater., 2105253

Wang, 2021, Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability, Nano Energy, 89, 106353, 10.1016/j.nanoen.2021.106353

Deng, 2020, Nonflammable organic electrolytes for high-safety lithium-ion batteries, Energy Storage Mater., 32, 425, 10.1016/j.ensm.2020.07.018

Chen, 2020, Designing an intrinsically safe organic electrolyte for rechargeable batteries, Energy Storage Mater., 31, 382, 10.1016/j.ensm.2020.06.027

Liu, 2018, Materials for lithium-ion battery safety, Sci. Adv., 4, 10.1126/sciadv.aas9820

Wang, 2019, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 55, 93, 10.1016/j.nanoen.2018.10.035

Zhang, 2021, Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives, Small Sci., 2100058, 10.1002/smsc.202100058

Dagger, 2018, Comparative performance evaluation of flame retardant additives for lithium ion batteries – I. Safety, chemical and electrochemical stabilities, Energy Technol., 6, 2011, 10.1002/ente.201800132

Dagger, 2018, Comparative performance evaluation of flame retardant additives for lithium ion batteries – II. Full cell cycling and postmortem analyses, Energy Technol., 6, 2023, 10.1002/ente.201800133

Wang, 2018, Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy, 3, 22, 10.1038/s41560-017-0033-8

Chen, 2021, Rapid leakage responsive and self-healing Li-metal batteries, Chem. Eng. J., 404, 126470, 10.1016/j.cej.2020.126470

Ju, 2021, Leakage-proof electrolyte chemistry for a high-performance lithium–sulfur battery, Angew. Chem. Int. Ed., 60, 16487, 10.1002/anie.202103209

Eftekhari, 2018, High-energy aqueous lithium batteries, Adv. Energy Mater., 8, 1801156, 10.1002/aenm.201801156

Balaish, 2021, Processing thin but robust electrolytes for solid-state batteries, Nat. Energy, 6, 227, 10.1038/s41560-020-00759-5

Xiang, 2021, A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature, Energy Environ. Sci., 14, 3510, 10.1039/D1EE00049G

Zou, 2018, Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small, 14, 1801798, 10.1002/smll.201801798

Yang, 2018, Thermal-responsive polymers for enhancing safety of electrochemical storage devices, Adv. Mater., 30, 1704347, 10.1002/adma.201704347

Peng, 2021, A rational design for a high-safety lithium-ion battery assembled with a heatproof–fireproof bifunctional separator, Adv. Funct. Mater., 31, 2008537, 10.1002/adfm.202008537

Zhang, 2021, Recent progress in flame-retardant separators for safe lithium-ion batteries, Energy Storage Mater., 37, 628, 10.1016/j.ensm.2021.02.042

Chou, 2021, Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries, Nano Lett., 21, 2074, 10.1021/acs.nanolett.0c04568

Liu, 2021, Thermoregulating separators based on phase-change materials for safe lithium-ion batteries, Adv. Mater., 33, 2008088, 10.1002/adma.202008088

Zhou, 2020, A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries, Adv. Energy Mater., 10, 1903441, 10.1002/aenm.201903441

Ye, 2020, Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries, Nat. Energy, 5, 786, 10.1038/s41560-020-00702-8

Li, 2019, Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries, Adv. Energy Mater., 9, 1802930, 10.1002/aenm.201802930

Xu, 2002, An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, J. Electrochem. Soc., 149, A622, 10.1149/1.1467946

Wang, 2001, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. fundamental properties, J. Electrochem. Soc., 148, A1058, 10.1149/1.1397773

Wang, 2001, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. the use of an amorphous carbon anode, J. Electrochem. Soc., 148, A1066, 10.1149/1.1397774

Wang, 2006, High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge–discharge performance of a graphite anode for lithium-ion cells, J. Electrochem. Soc., 153, A135, 10.1149/1.2136078

Takada, 2019, Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent, ACS Appl. Mater. Interfaces, 11, 35770, 10.1021/acsami.9b12709

Jia, 2021, Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries, Angew. Chem. Int. Ed., 60, 12999, 10.1002/anie.202102403

Zhang, 2021, Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries, ACS Appl. Mater. Interfaces, 13, 681, 10.1021/acsami.0c19075

Shi, 2018, A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries, Chem. Commun., 54, 4453, 10.1039/C8CC00994E

Nakagawa, 2012, Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester, J. Power Sources, 212, 148, 10.1016/j.jpowsour.2012.04.013

Zeng, 2018, Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy, 3, 674, 10.1038/s41560-018-0196-y

Cao, 2019, Nonflammable electrolytes for lithium ion batteries enabled by ultraconformal passivation interphases, ACS Energy Lett., 4, 2529, 10.1021/acsenergylett.9b01926

Jia, 2019, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater., 9, 1900784, 10.1002/aenm.201900784

Yang, 2018, Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode, Chem. Commun., 54, 4132, 10.1039/C7CC09942H

Yang, 2019, An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries, Angew. Chem. Int. Ed., 58, 791, 10.1002/anie.201811291

Chen, 2018, High-efficiency lithium metal batteries with fire-retardant electrolytes, Joule, 2, 1548, 10.1016/j.joule.2018.05.002

Li, 2021, Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte, Energy Storage Mater., 42, 628, 10.1016/j.ensm.2021.08.015

Tan, 2019, Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed., 58, 7802, 10.1002/anie.201903466

Zhang, 2021, Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions, Angew. Chem. Int. Ed., 133, 19332, 10.1002/ange.202103909

Xiang, 2007, Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, J. Power Sources, 173, 562, 10.1016/j.jpowsour.2007.05.001

Feng, 2013, Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries, Electrochim. Acta, 114, 688, 10.1016/j.electacta.2013.10.104

Zeng, 2015, Safer lithium ion batteries based on nonflammable electrolyte, J. Power Sources, 279, 6, 10.1016/j.jpowsour.2014.12.150

Hyung, 2003, Flame-retardant additives for lithium-ion batteries, J. Power Sources, 119–121, 383, 10.1016/S0378-7753(03)00225-8

Liu, 2020, Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent, Chem. Commun., 56, 6559, 10.1039/D0CC02940H

Chen, 2009, A novel flame retardant and film-forming electrolyte additive for lithium ion batteries, J. Power Sources, 187, 229, 10.1016/j.jpowsour.2008.10.091

Yu, 2020, Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries, J. Energy Chem., 51, 154, 10.1016/j.jechem.2020.03.034

Chung, 2020, Fire-preventing LiPF6 and ethylene carbonate-based organic liquid electrolyte system for safer and outperforming lithium-ion batteries, ACS Appl. Mater. Interfaces, 12, 42868, 10.1021/acsami.0c12702

Yang, 2021, Nonflammable functional electrolytes with all-fluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode, J. Power Sources, 505, 230055, 10.1016/j.jpowsour.2021.230055

Chen, 2019, Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery, Chemistry, 5, 896, 10.1016/j.chempr.2019.02.003

Fan, 2018, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13, 715, 10.1038/s41565-018-0183-2

Zheng, 2020, A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy, 5, 291, 10.1038/s41560-020-0567-z

Zeng, 2020, Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte, InfoMat, 2, 984, 10.1002/inf2.12089

Gu, 2021, Tris(2,2,2-trifluoroethyl) phosphate as a cosolvent for a nonflammable electrolyte in lithium-ion batteries, ACS Appl. Energ. Mater., 4, 4919, 10.1021/acsaem.1c00503

Yang, 2021, Rational electrolyte design to form inorganic–polymeric interphase on silicon-based anodes, ACS Energy Lett., 6, 1811, 10.1021/acsenergylett.1c00514

Rollins, 2014, Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes, J. Power Sources, 263, 66, 10.1016/j.jpowsour.2014.04.015

Harrup, 2015, Unsaturated phosphazenes as co-solvents for lithium-ion battery electrolytes, J. Power Sources, 278, 794, 10.1016/j.jpowsour.2014.07.109

Li, 2021, High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent, ACS Appl. Mater. Interfaces, 13, 10141, 10.1021/acsami.1c00661

Xia, 2015, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries, J. Power Sources, 278, 190, 10.1016/j.jpowsour.2014.11.140

Li, 2018, Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries, J. Power Sources, 378, 707, 10.1016/j.jpowsour.2017.12.085

Liu, 2018, Fluorinated phosphazene derivative – a promising electrolyte additive for high voltage lithium ion batteries: from electrochemical performance to corrosion mechanism, Nano Energy, 46, 404, 10.1016/j.nanoen.2018.02.029

Liu, 2021, Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries, Energy Storage Mater., 37, 521, 10.1016/j.ensm.2021.02.039

Li, 2019, Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive, J. Electrochem. Soc., 166, A2736, 10.1149/2.0081913jes

Dagger, 2017, J. Power Sources, 342, 266, 10.1016/j.jpowsour.2016.12.007

Ji, 2017, Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO2 cathode: a case of phosphazene additives, J. Power Sources, 359, 391, 10.1016/j.jpowsour.2017.05.091

Gu, 2021, A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range, J. Mater. Chem. A, 9, 15363, 10.1039/D1TA01088C

Feng, 2016, A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries, RSC Adv., 6, 7224, 10.1039/C5RA22547G

Armand, 2009, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 8, 621, 10.1038/nmat2448

Francis, 2020, Lithium-ion battery separators for ionic-liquid electrolytes: a review, Adv. Mater., 32, 1904205, 10.1002/adma.201904205

Fang, 2015, Novel mixtures of ether-functionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries, RSC Adv., 5, 33897, 10.1039/C5RA01713K

Wang, 2020, Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries, Energy Storage Mater., 30, 228, 10.1016/j.ensm.2020.05.020

Wu, 2021, Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries, Joule, 10.1016/j.joule.2021.06.014

Lee, 2020, Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes, Adv. Funct. Mater., 30, 2003132, 10.1002/adfm.202003132

Wang, 2021, Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries, Adv. Energy Mater., 11, 2003752, 10.1002/aenm.202003752

Zhang, 2012, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev., 41, 7108, 10.1039/c2cs35178a

Wu, 2021, Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective, Adv. Funct. Mater., 31, 2011102, 10.1002/adfm.202011102

Hansen, 2021, Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev., 121, 1232, 10.1021/acs.chemrev.0c00385

Hu, 2020, Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries, Chem. Mater., 32, 3405, 10.1021/acs.chemmater.9b05003

Song, 2021, Organosulfide-based deep eutectic electrolyte for lithium batteries, Angew. Chem. Int. Ed., 60, 9881, 10.1002/anie.202016875

Jiang, 2019, Methylsulfonylmethane-based deep eutectic solvent as a new type of green electrolyte for a high-energy-density aqueous lithium-ion battery, ACS Energy Lett., 4, 1419, 10.1021/acsenergylett.9b00968

Li, 1994, Rechargeable lithium batteries with aqueous-electrolytes, Science, 264, 1115, 10.1126/science.264.5162.1115

Wang, 2017, Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries, Adv. Energy Mater., 7, 1600922, 10.1002/aenm.201600922

Wang, 2016, Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive, Energy Environ. Sci., 9, 3666, 10.1039/C6EE02604D

Shen, 2021, Water-in-salt electrolyte for safe and high-energy aqueous battery, Energy Storage Mater., 34, 461, 10.1016/j.ensm.2020.10.011

Suo, 2015, Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595

Shang, 2020, An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries, Adv. Mater., 32, 2004017, 10.1002/adma.202004017

Suo, 2016, Advanced high -voltageaqueous lithium -ionbattery enabled by “ water-in-bisalt”electrolyte, Angew. Chem. Int. Ed., 55, 7136, 10.1002/anie.201602397

Xie, 2020, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater., 19, 1006, 10.1038/s41563-020-0667-y

Banerjee, 2020, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes, Chem. Rev., 120, 6878, 10.1021/acs.chemrev.0c00101

Mishra, 2021, Review-inorganic solid state electrolytes: insights on current and future scope, J. Electrochem. Soc., 168, 10.1149/1945-7111/ac1dcc

Chen, 2020, The thermal stability of lithium solid electrolytes with metallic lithium, Joule, 4, 812, 10.1016/j.joule.2020.03.012

Li, 2021, Polymers in lithium-ion and lithium metal batteries, Adv. Energy Mater., 11, 2003239, 10.1002/aenm.202003239

Han, 2021, Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al, P-rich SEI layer, Nano Lett., 21, 4447, 10.1021/acs.nanolett.1c01137

Cui, 2020, A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries, Nano Lett., 20, 1686, 10.1021/acs.nanolett.9b04815

Guo, 2021, Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries, Chem. Eng. J., 422, 130526, 10.1016/j.cej.2021.130526

Li, 2021, Electrochemically-matched and nonflammable janus solid electrolyte for lithium-metal batteries, ACS Appl. Mater. Interfaces, 13, 39271, 10.1021/acsami.1c08687

Wang, 2021, In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries, Chem. Eng. J., 415, 128846, 10.1016/j.cej.2021.128846

Li, 2021, Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules, Energy Storage Mater., 40, 329, 10.1016/j.ensm.2021.05.018

Deng, 2021, Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater., 11, 2000806, 10.1002/aenm.202000806

Deng, 2020, Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells, Joule, 4, 2017, 10.1016/j.joule.2020.07.014