Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach
Tóm tắt
The widespread of coronavirus (COVID-19) is a new global health crisis that poses a threat to the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in bats and was discovered first in Wuhan, Hubei province, China in December 2019. Immunoinformatics and bioinformatics tools were employed for the construction of a multi-epitope subunit vaccine to prevent the diseases. The antigenicity, toxicity and allergenicity of all epitopes used in the construction of the vaccine were predicted and then conjugated with adjuvants and linkers. Vaccine Toll-Like Receptors (2, 3, 4, 8 and 9) complex was also evaluated. The vaccine construct was antigenic, non-toxic and non-allergic, which indicates the vaccines ability to induce antibodies in the host, making it an effective vaccine candidate.
Tài liệu tham khảo
Bacchetta R, Gambineri E, Roncarolo MG (2016) Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol 120:227–235
Basto AP, Leitão A (2014) Targeting TLR2 for vaccine development. J Immunol Res. https://doi.org/10.1155/2014/619410
Bhattacharya M, Sharma AR, Mallick B, Sharma G, Lee SS, Chakraborty C (2020a) Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2020.104587
Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee SS, Chakraborty C (2020b) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): immunoinformatics approach. J Med Virol 92(6):618–631. https://doi.org/10.1002/jmv.25736 (Epub 2020 Mar 5. PMID: 32108359; PMCID: PMC7228377)
Carty M, Bowie AG (2010) Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol 161(3):397–406. https://doi.org/10.1111/j.1365-2249.2010.04196.x (PMID:20560984;PMCID:PMC2962956)
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS (2020a) SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci 24(7):4016–4026. https://doi.org/10.26355/eurrev_202004_20871 (PMID: 32329877)
Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Agoramoorthy G (2020b) Consider TLR5 for new therapeutic development against COVID-19. J Med Virol. https://doi.org/10.1002/jmv.25997
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Saha RP, Lee SS (2020c) Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Arch Med Res. https://doi.org/10.1016/j.arcmed.2020.05.021 (Epub ahead of print. PMID: 32532523; PMCID: PMC7260497)
Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980 (PMID:20176265;PMCID:PMC2923430)
Chauhan V, Singh MP (2020) Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2020.105279 ((Epub 2020 Feb 29. PMID: 32119992))
Chauhan V, Rungta T, Goyal K, Singh MP (2019) Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep 9(1):2517. https://doi.org/10.1038/s41598-019-39299-8 ((PMID:30792446;PMCID:PMC6385272))
Chen WH, Strych U, Hotez PJ, Bottazzi ME (2020) The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. https://doi.org/10.1007/s40475-020-00201-6 ((Epub ahead of print. PMID: 32219057; PMCID: PMC7094941))
Craig DB, Dombkowski AA (2013) Disulfide by design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-346
Dagur HS, Dhakar SS (2020) Genome organization of Covid-19 and emerging severe acute respiratory syndrome Covid-19 outbreak: a pandemic. EJMO 4(2):107–115
De Groot AS, Moise L, McMurry JA, Martin W (2008) Epitope-based immunome-derived vaccines: a strategy for improved design and safety. Clin Appl Immunom 2:39–69. https://doi.org/10.1007/978-0-387-79208-8_3
Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J (2020) Bioinformatics analysis of domain 1 of HCV-core protein: Iran. Int J Pept Res Ther 26(1):303–320. https://doi.org/10.1007/s10989-019-09838-y
Duthie MS, Hay MN, Rada EM, Convit J, Ito L, Oyafuso LK et al (2011) Specific IgG antibody responses may be used to monitor leprosy treatment efficacy and as recurrence prognostic markers. Eur J Clin Microbiol Infect Dis 30(10):1257–1265
Enayatkhani M, Hasaniazad M, Faezi S, Guklani H, Davoodian P, Ahmadi N, Einakian MA, Karmostaji A, Ahmadi K (2020) Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn 1–16
Forthal DN (2014) Functions of antibodies. Microbiol Spec 2(4):1–17
Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI—Multi FASTA ProtParam interface. Bioinformation 12(2):74–77. https://doi.org/10.6026/97320630012074 ((PMID:28104964;PMCID:PMC5237651))
Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681 (PMID: 8808585)
Gouripur GC, Kaliwa RB, Kaliwal BB (2016) In silico characterization of beta-galactosidase using computational tools. J Bioinform Seq Anal 8(1):1–11. https://doi.org/10.1080/07391102.2020.1756411
Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. https://doi.org/10.1093/nar/gki376
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx346
Kalita P, Lyngdoh DL, Padhi AK, Shukla H, Tripathi T (2019) Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. Int J Biol Macromol 138:224–233. https://doi.org/10.1016/j.ijbiomac.2019.07.024
Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, Chen Q, Yan Y, Zhang C, Shan H, Chen S (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2020.04.009
Kar T, Narsaria U, Basak S et al (2020) A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 10:10895. https://doi.org/10.1038/s41598-020-67749-1
Khan A, Ali A, Kaushik AC, Wang Y, Ali SS, Junaid M, Saleem S, Cho W, Mao X, Wei DQ (2019) Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein-Barr virus (EBV). Sci Rep 9(1):720. https://doi.org/10.1038/s41598-018-37070-z
Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7(1):8285. https://doi.org/10.1038/s41598-017-08842-w
Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. https://doi.org/10.1093/nar/gks493
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12(2):255–278
Kumar S, Maurya VK, Prasad AK, Bhatt M, Saxena SK (2020) Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virus Dis 31(1):13–21. https://doi.org/10.1007/s13337-020-00571-5
Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. https://doi.org/10.1186/1471-2105-8-424
Li M, Li M, Lin H, Wang J, Jin Y, Han F (2016) Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin. Adv Virol 161(2):377–384. https://doi.org/10.1007/s00705-015-2647-0
Liu H, Irvine DJ (2015) Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem 26(5):791–801. https://doi.org/10.1021/acs.bioconjchem.5b00103
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates, normal mode analysis server. Nucleic Acids Res. https://doi.org/10.1093/nar/gku339
Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, Baldi P (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics (Oxford, England) 26(23):2936–2943. https://doi.org/10.1093/bioinformatics/btq551
Majid M, Andleeb S (2019) Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep 9(1):19780. https://doi.org/10.1038/s41598-019-55613-w
Microbiology Society (2020) Immune System. 2020. https://microbiologysociety.org/why-microbiology-matters/what-is-microbiology/microbes-and-the-human-body/immune-system.html. Accessed 29 Jul 2020.
Mohanta V, Madras G, Patil S (2019) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6(22):20093–20101
Nadeem M et al (2020) SARS-CoV-2, pandemic COVID 19: a brief review. Ann Med Health Sci Res 10:846–856
Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, Morowvat MH, Dehshahri A, Erfani N, Ghasemi Y (2018) Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol 58:96–109. https://doi.org/10.1016/j.meegid.2017.12.008
Oladipo EK, Ajayi AF, Ariyo OE, Onile SO, Jimah EM, Ezediuno LO, Adebayo OI, Adebayo ET, Odeyemi AN, Oyeleke MO, Oyewole MP, Oguntomi AS, Akindiya OE, Olamoyegun BO, Aremu VO, Arowosaye AO, Aboderin DO, Bello HB, Senbadejo TY, Awoyelu EH, Oladipo AA, Oladipo BB, Ajayi LO, Majolagbe ON, Oyawoye OM, Oloke JK (2020a) Exploration of surface glycoprotein to design a multi-epitope vaccine for the prevention of Covid-19. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2020.100438 ((Epub 2020 Oct 4. PMID: 33043110; PMCID: PMC7533051))
Oladipo EK, Ajayi AF, Odeyemi AN, Akindiya OE, Adebayo ET, Oguntomi AS, Oyewole MP, Jimah EM, Oladipo AA, Ariyo OE, Oladipo BB, Oloke JK (2020b) Laboratory diagnosis of COVID-19 in Africa: availability, challenges and implications. Drug Discov Ther 14(4):153–160. https://doi.org/10.5582/ddt.2020.03067 (PMID: 32908070)
Ou X, Liu Y, Lei X et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11:1620. https://doi.org/10.1038/s41467-020-15562-9
Pandey K, Sharma M, Saarav I, Singh S, Dutta P, Bhardwaj A, Sharma S (2016) Analysis of the DosR regulon genes to select cytotoxic T lymphocyte epitope-specific vaccine candidates using a reverse vaccinology approach. Int J Mycobacteriol 5(1):34–43. https://doi.org/10.1016/j.ijmyco.2015.10.005
Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK (2018) Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine. https://doi.org/10.1016/j.vaccine.2018.03.042
Saadi M, Karkhah A, Nouri HR (2017) Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect Genet Evol 51:227–234. https://doi.org/10.1016/j.meegid.2017.04.009
Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using a recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/prot.21078
Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee S-S, Chakraborty C (2020a) Tocilizumab: a therapeutic option for the treatment of cytokine storm syndrome in COVID-19. Arch Med Res. https://doi.org/10.1016/j.arcmed.2020.05.009
Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee S-S, Chakraborty C (2020b) Probable molecular mechanism of Remdesivir for the treatment of COVID-19: need to know more. Arch Med Res. https://doi.org/10.1016/j.arcmed.2020.05.001
Sanami S, Zandi M, Pourhossein B, Mobini GR, Safaei M, Abed A, Arvejeh PM, Chermahini FA, Alizadeh M (2020) Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int J Biol Macromol 164:871–883. https://doi.org/10.1016/j.ijbiomac.2020.07.117
Sayed SB, Nain Z, Khan M, Abdulla F, Tasmin R, Adhikari UK (2020) Exploring Lassa Virus proteome to design a MultiEpitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-10003-8
Shanmugam A, Rajoria S, George AL, Mittelman A, Suriano R, Tiwari RK (2012) Synthetic Toll-like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS ONE. https://doi.org/10.1371/journal.pone.0030839
Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J (2019) In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 9(1):4409. https://doi.org/10.1038/s41598-019-40833-x
Sivakumar K (2010) Biocomputation and biomedical informatics: case study and application, edn 1. University of Peloponnese, Greece, pp 143–157
Solanki V, Tiwari M, Tiwari V (2019) Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep 9(1):5240. https://doi.org/10.1038/s41598-019-41496-4
Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2015) An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J Biomed Inform. https://doi.org/10.1016/j.jbi.2014.11.003
Steven GR, Fan-Chi H, Darrick C, Mark TO (2016) The science of vaccine adjuvants: advances in TLR4 ligand adjuvants. Curr Opin Immunol. https://doi.org/10.1016/j.coi.2016.06.007. http://www.sciencedirect.com/science/article/pii/S0952791516300632
Tobón GJ, Izquierdo JH, Cañas CA (2013) B Lymphocytes: development, tolerance, and their role in autoimmunity—focus on systemic lupus erythematosus. Autoimmune Dis. https://doi.org/10.1155/2013/827254
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A (2020) Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 12(2):102. https://doi.org/10.3390/pharmaceutics12020102
Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. https://doi.org/10.1186/1471-2105-11-568
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm290
Yasmin T, Akter S, Debnath M, Ebihara A, Nakagawa T, Nabi AH (2016) In silico proposition to predict cluster of B- and T-cell epitopes for the usefulness of vaccine design from invasive, virulent and membrane-associated proteins of C. jejuni. In Silico Pharmacol 4(1):5. https://doi.org/10.1186/s40203-016-0020-y
Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40. https://doi.org/10.1186/1471-2105-9-40
Zingoni A, Cerboni C, Ardolino M, Santoni A (2009) Modulation of T cell-mediated immune responses by natural killer cells. In: Zimmer J (ed) Natural killer cells. Springer, Berlin
