Thiết kế Nguyên Liệu Tiền Đề cho Xi Măng Geopolymer
Tóm tắt
Từ khóa
#Geopolymer #tiền đề #xi măng #vật liệu xây dựng #công nghệ xanh #tiêu chuẩn quốc tế #ASTM Class C ashes #hoạt hóa kiềm.Tài liệu tham khảo
K.HumphreysandM.Mahasenan “Toward a Sustainable Cement Industry. Substudy 8:Climate Change ”World Business Council for Sustainable Development 2002 92pp.
Duxson P., 2007, Geopolymer Technology, The Current State of the Art, 42, 2917
Davidovits J., 1982, Transfer and Exploitation of Scientific and Technical Information, EUR 7716, 316
Glukhovsky V. D., 1994, Proceedings of the First International Conference on Alkaline Cements and Concretes, 1
Gordon M., 2005, Comparison of Naturally and Synthetically Derived, Potassium‐Based Geopolymers, Ceram. Trans., 165, 95, 10.1002/9781118408353.ch9
Hos J. P., 2002, Investigation of a Synthetic Aluminosilicate Inorganic Polymer, J. Mater. Sci., 37, 2311, 10.1023/A:1015329619089
Zosin A. P., 1998, Geopolymer Materials Based on Magnesia–Iron Slags for Normalization and Storage of Radioactive Wastes, At. Energy, 85, 510, 10.1007/BF02358790
Komnitsas K., 2007, Geopolymerisation of Low Calcium Ferronickel Slags, J. Mater. Sci., 42, 3073, 10.1007/s10853-006-0529-2
Tsuyuki N., 1999, Granularity and Surface Structure of Ground Granulated Blast‐Furnace Slags, J. Am. Ceram. Soc., 82, 2188, 10.1111/j.1151-2916.1999.tb02061.x
Osborn E. F., 1954, Optimum Composition of Blast‐Furnace Slag as Deduced from Liquids Data for the Quaternary System CaO–MgO–Al2O3–SiO2, J. Metals, 6, 33
Wan H., 2004, Analysis of Geometric Characteristics of GGBS Particles and their Influences on Cement Properties, Cem. Concr. Res., 34, 133, 10.1016/S0008-8846(03)00252-7
Wang P. Z., 2005, Effect of Fineness and Particle Size Distribution of Granulated Blast‐Furnace Slag on the Hydraulic Reactivity in Cement Systems, Adv. Cem. Res., 17, 161, 10.1680/adcr.2005.17.4.161
Hemmings R. T., 1988, Fly Ash and Coal Conversion By‐Products: Characterization, Utilization, and Disposal IV, 3
Nugteren H. W., 2007, Coal Fly Ash, From Waste to Industrial Product, 24, 49
J. G. S.Van Jaarsveld “The Physical and Chemical Characterisation of Fly Ash Based Geopolymers”; Ph.D. Thesis University of Melbourne Australia 2000.
Keyte L. M., 2005, WasteEng 2005. CD‐ROM Proceedings
Perera D. S., 2004, Geopolymers Made Using New Zealand Flyash, J. Ceram. Soc. Jpn., 112, S108
Xu H., 2004, Proceedings of 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 797
Chindaprasirt P., 2007, Workability and Strength of Coarse High Calcium Fly Ash Geopolymer, Cem. Concr. Compos., 29, 224, 10.1016/j.cemconcomp.2006.11.002
A.Roy P. J.Schilling andH. C.Eaton “Alkali Activated Class C Fly Ash Cement”; U.S. Patent 5 565 0281996.
Lukey G. C., 2006, Concrete Mix Design, Quality Control and Specification. Appendix A
Brouwers H. J. H., 2002, Fly Ash Reactivity, Extension and Application of a Shrinking Core Model and Thermodynamic Approach, 37, 2129
Van Jaarsveld J. G. S., 1999, Effect of the Alkali Metal Activator on the Properties of Fly Ash‐Based Geopolymers, Ind. Eng. Chem. Res., 38, 3932, 10.1021/ie980804b
Jong B. H. W. S. de, 1980, Polymerization of Silicate and Aluminate Tetrahedra in Glasses, Melts, and Aqueous Solutions—I. Electronic Structure of H6Si2O7, H6AlSiO7 1−, and H6Al2O7 2, Geochim. Cosmochim. Acta, 44, 491, 10.1016/0016-7037(80)90046-0
Hamilton J. P., 2001, Dissolution of Nepheline, Jadeite and Albite Glasses, Toward Better Models for Aluminosilicate Dissolution, 65, 3683
Blum A. E., 1991, The Role of Surface Speciation in the Dissolution of Albite, Geochim. Cosmochim. Acta, 55, 2193, 10.1016/0016-7037(91)90096-N
Oelkers E. H., 2001, The Mechanism, Rates and Consequences of Basaltic Glass Dissolution, I. An Experimental Study of the Dissolution Rates of Basaltic Glass as a Function of Aqueous Al, Si and Oxalic Acid Concentration at 25°C and pH=3 and 11, 65, 3671
Lee S. K., 2006, Disorder and the Extent of Polymerization in Calcium Silicate and Aluminosilicate Glasses, O-17 NMR Results and Quantum Chemical Molecular Orbital Calculations, 70, 4275
Blum A. E., 1988, Role of Surface Speciation in the Low‐Temperature Dissolution of Minerals, Nature, 331, 431, 10.1038/331431a0
Bickmore B. R., 2006, The Effect of Al(OH)4 − on the Dissolution Rate of Quartz, Geochim. Cosmochim. Acta, 70, 290, 10.1016/j.gca.2005.09.017
Dove P. M., 1994, The Dissolution Kinetics of Quartz in Sodium Chloride Solutions at 25° to 300°C, Am. J. Sci., 294, 665, 10.2475/ajs.294.6.665
C. A.Rees “Mechanisms and Kinetics of Gel Formation in Geopolymers”; Ph.D. Thesis University of Melbourne 2007.
W. M.Kriven C. A.Kelly andD. C.Comrie “Geopolymers for Structural Ceramic Applications Air Force Office of Scientific Research Report FA9550‐04‐C‐0063 2006 144pp.http://stinet.dtic.mil/cgi‐bin/GetTRDoc?AD=ADA463559&Location=U2&doc=GetTRDoc.pdf.
Duxson P., 2006, Thermal Evolution of Metakaolin Geopolymers, Part 1—Physical Evolution, 352, 5541
Duxson P., 2007, The Thermal Evolution of Metakaolin Geopolymers, Part 2—Phase Stability and Structural Development, 353, 2186
Feng X. P., 2006, Sialite Technology, Adv. Mater. Res., 11, 615, 10.4028/www.scientific.net/AMR.11-12.615
Bouzoubaâ N., 1997, The Effect of Grinding on the Physical Properties of Fly Ashes and a Portland Cement Clinker, Cem. Concr. Res., 27, 1861, 10.1016/S0008-8846(97)00194-4
Bouzoubaâ N., 1999, Blended fly Ash Cements—A Review, ACI Mater. J., 96, 641