Design, synthesis, and biological evaluation of multiple targeting antimalarials
Tài liệu tham khảo
2020
Cheviet, 2019, Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues, J Med Chem, 62, 8365, 10.1021/acs.jmedchem.9b00182
Blasco, 2017, Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic, Nat Med, 23, 917, 10.1038/nm.4381
Amato, 2018, Origins of the current outbreak of multidrug-resistant malaria in Southeast Asia: a retrospective genetic study, Lancet Infect Dis, 18, 337, 10.1016/S1473-3099(18)30068-9
Uwimana, 2020, Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda, Nat Med, 26, 1602, 10.1038/s41591-020-1005-2
Goodman, 2017, Is the mitochondrion a good malaria drug target?., Trends Parasitol, 33, 185, 10.1016/j.pt.2016.10.002
Stocks, 2014, Novel inhibitors of the Plasmodium falciparum electron transport chain, Parasitology, 141, 50, 10.1017/S0031182013001571
Painter, 2007, Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum, Nature, 446, 88, 10.1038/nature05572
Leung, 2012, Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2), J Med Chem, 55, 1844, 10.1021/jm201184h
Yang, 2017, Target elucidation by cocrystal structures of NADH-ubiquinone oxidoreductase of Plasmodium falciparum (PfNDH2) with small molecule to eliminate drug-resistant malaria, J Med Chem, 60, 1994, 10.1021/acs.jmedchem.6b01733
Petri, 2018, Structure of the NDH-2‒HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors, Biochim Biophys Acta Bioenerg, 1859, 482, 10.1016/j.bbabio.2018.03.014
Birth, 2014, Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action, Nat Commun, 5, 4029, 10.1038/ncomms5029
Lane, 2018, Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors, Proc Natl Acad Sci U S A, 115, 6285, 10.1073/pnas.1804492115
Capper, 2015, Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1, Proc Natl Acad Sci U S A, 112, 755, 10.1073/pnas.1416611112
Stickles, 2016, Atovaquone and ELQ-300 combination therapy as a novel dual-site cytochrome bc1 inhibition strategy for malaria, Antimicrob Agents Chemother, 60, 4853, 10.1128/AAC.00791-16
David, 2018, Potent antimalarial 2-pyrazolyl quinolone bc1 (Qi) inhibitors with improved drug-like properties, ACS Med Chem Lett, 9, 1205, 10.1021/acsmedchemlett.8b00371
Llanos-Cuentas, 2018, Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study, Lancet Infect Dis, 18, 874, 10.1016/S1473-3099(18)30309-8
Mandt, 2019, In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model, Sci Transl Med, 11, 10.1126/scitranslmed.aav1636
Yang, 2019, Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors, J Med Chem, 62, 4056, 10.1021/acs.jmedchem.9b00091
Xu, 2013, Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: discovery and optimization of dihydrothiophenone derivatives, J Med Chem, 56, 7911, 10.1021/jm400938g
Ke, 2019, Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages, PLoS One, 14, 10.1371/journal.pone.0214023
Paton, 2019, Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission, Nature, 567, 239, 10.1038/s41586-019-0973-1
Boysen, 2011, Arrested oocyst maturation in Plasmodium parasites lacking type II NADH:ubiquinone dehydrogenase, J Biol Chem, 286, 32661, 10.1074/jbc.M111.269399
Biagini, 2012, Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria, Proc Natl Acad Sci U S A, 109, 8298, 10.1073/pnas.1205651109
Song, 2018, The antimalarial compound ELQ-400 is an unusual inhibitor of the bc1 complex, targeting both Qo and Qi sites, FEBS Lett, 592, 1346, 10.1002/1873-3468.13035
Feng, 2012, Structural insight into the type-II mitochondrial NADH dehydrogenases, Nature, 491, 478, 10.1038/nature11541
Leslie, 2007, Novel carbazole derivatives as NPY Y1 antagonists, Bioorg Med Chem Lett, 17, 1043, 10.1016/j.bmcl.2006.11.034
Pegoraro, 2017, SC83288 is a clinical development candidate for the treatment of severe malaria, Nat Commun, 8, 14193, 10.1038/ncomms14193
Mu, 2010, Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs, Nat Genet, 42, 268, 10.1038/ng.528
Kato, 2016, Diversity-oriented synthesis yields novel multistage antimalarial inhibitors, Nature, 538, 344, 10.1038/nature19804
Ke, 2011, Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function, Eukaryot Cell, 10, 1053, 10.1128/EC.05049-11
Wang, 2015, Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum, Nat Commun, 6, 10111, 10.1038/ncomms10111
Ismail, 2016, Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7, Proc Natl Acad Sci U S A, 113, 2080, 10.1073/pnas.1600459113
Vallières, 2013, Reconstructing the Qo site of Plasmodium falciparum bc1 complex in the yeast enzyme, PLoS One, 8, 10.1371/journal.pone.0071726
Song, 2015, Interplay between the hinge region of iron sulphur protein and the Qo site in the bc1 complex analysis of Plasmodium-like mutations in the yeast enzyme, Biochim Biophys Acta, 1847, 1487, 10.1016/j.bbabio.2015.08.005
Lencina, 2018, Type 2 NADH dehydrogenase is the only point of entry for electrons into the Streptococcus agalactiae respiratory chain and is a potential drug target, mBio, 9, 10.1128/mBio.01034-18
Lin, 2011, Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth, Mol Microbiol, 82, 209, 10.1111/j.1365-2958.2011.07807.x
Sellamuthu, 2017, Type-II NADH dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery, Expert Opin Ther Targets, 21, 559, 10.1080/14728222.2017.1327577
Modica-Napolitano, 2001, Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells, Adv Drug Deliv Rev, 49, 63, 10.1016/S0169-409X(01)00125-9
Shi, 2019, Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma, Nature, 567, 341, 10.1038/s41586-019-0993-x
Hill, 2003, Recapitulation in Saccharomyces cerevisiae of cytochrome b mutations conferring resistance to atovaquone in Pneumocystis jiroveci, Antimicrob Agents Chemother, 47, 2725, 10.1128/AAC.47.9.2725-2731.2003
Lemaire, 2008, Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis, Methods Mol Biol, 432, 65, 10.1007/978-1-59745-028-7_5
Ke, 2018, The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum, J Biol Chem, 293, 8128, 10.1074/jbc.RA118.002552
Bowers, 2006, Scalable algorithms for molecular dynamics simulations on commodity clusters