Design strategies to improve soluble macromolecular delivery constructs
Tài liệu tham khảo
Duncan, 1984, Soluble synthetic polymers as potential drug carriers, Adv. Polym. Sci., 57, 53
Monfardini, 1998, Stabilization of substances in circulation, Bioconjug. Chem., 9, 418, 10.1021/bc970184f
Brocchini, 1999, Pendant drugs, release from polymers, Vol. 1, 786
Storm, 1998, Liposomes: quo vadis?, Pharm. Sci. Technol. Today, 1, 19, 10.1016/S1461-5347(98)00007-8
Uhrich, 1999, Polymeric systems for controlled drug release, Chem. Rev., 99, 3181, 10.1021/cr940351u
Jagur-Grodzinski, 1999, Biomedical application of functional polymers, React. Funct. Polym., 39, 99, 10.1016/S1381-5148(98)00054-6
Nagarsekar, 1999, Genetically engineered polymers for drug delivery, J. Drug Target., 7, 11, 10.3109/10611869909085489
Kumar, 2000, Nano and microparticles as controlled drug delivery devices, J. Pharm. Sci., 3, 234
Ulbrich, 2000, Hydrophilic polymers for drug delivery, Macromol. Symp., 152, 151, 10.1002/1521-3900(200003)152:1<151::AID-MASY151>3.0.CO;2-I
Brokx, 2002, Designing peptide-based scaffolds as drug delivery vehicles, J. Control. Release, 78, 115, 10.1016/S0168-3659(01)00491-6
Lu, 2002, Design of novel bioconjugates for targeted drug delivery, J. Control. Release, 78, 165, 10.1016/S0168-3659(01)00495-3
Kopecek, 2000, HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action, Eur. J. Pharm. Biopharm., 50, 61, 10.1016/S0939-6411(00)00075-8
Kopecek, 2001, Water soluble polymers in tumor targeted delivery, J. Control. Release, 74, 147, 10.1016/S0168-3659(01)00330-3
Putnam, 1995, Polymer conjugates with anticancer activity, Adv. Polym. Sci., 122, 55, 10.1007/3540587888_14
Vyas, 2000, Endogenous carriers and ligands in non-immunogenic site-specific drug delivery, Adv. Drug Deliv. Rev., 43, 101, 10.1016/S0169-409X(00)00067-3
Vyas, 2001, Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting, Crit. Rev. Ther. Drug Carrier Syst., 18, 1, 10.1615/CritRevTherDrugCarrierSyst.v18.i1.10
Baban, 1998, Control of tumor vascular permeability, Adv. Drug Deliv. Rev., 34, 109, 10.1016/S0169-409X(98)00003-9
Maeda, 2000, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271, 10.1016/S0168-3659(99)00248-5
Laakkonen, 2002, A tumor-homing peptide with a targeting specificity related to lymphatic vessels, Nature Med., 8, 751, 10.1038/nm720
Wattiaux, 2000, Endosomes, lysosomes: their implication in gene transfer, Adv. Drug Deliv. Rev., 41, 201, 10.1016/S0169-409X(99)00066-6
Vasey, 1999, Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamine copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug–polymer conjugates, Clin. Cancer Res., 5, 83
Rejmanova, 1983, Polymers containing enzymatically degradable bonds. 8. Degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacrylamide copolymers by bovine spleen cathepsin B, Makromol. Chem., 184, 2009, 10.1002/macp.1983.021841006
Turk, 2001, Lysosomal cysteine proteases: facts and opportunities, EMBO J., 20, 4629, 10.1093/emboj/20.17.4629
Hovorka, 2002, Differences in the intracellular fate of free and polymer-bound doxorubicin, J. Control. Release, 80, 101, 10.1016/S0168-3659(02)00016-0
Duncan, 2001, Polymer–drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic, J. Control. Release, 74, 135, 10.1016/S0168-3659(01)00328-5
Asokan, 2002, Exploitation of intracellular pH gradients in the cellular delivery of macromolecules, J. Pharm. Sci., 91, 903, 10.1002/jps.10095
Overly, 1995, Quantitative measurement of intraorganelle pH in the endosomal–lysosomal pathway in neurons by using ratiometric imaging with pyranine, Proc. Natl. Acad. Sci. USA, 92, 3156, 10.1073/pnas.92.8.3156
McNamara, 2001, Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements, Anal. Chem., 73, 3240, 10.1021/ac0102314
Kratz, 1999, Drug–polymer conjugates containing acid cleavable bonds, Crit. Rev. Ther. Drug Carrier Sys., 16, 245, 10.1615/CritRevTherDrugCarrierSyst.v16.i3.10
Etrych, 2001, New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties, J. Control. Release, 73, 89, 10.1016/S0168-3659(01)00281-4
Etrych, 2002, Synthesis of HPMA copolymers containing doxorubicin bound via a hydrazone linkage. Effect of spacer on drug release and in vitro cytotoxicity, Macromol. Biosci., 2, 43, 10.1002/1616-5195(20020101)2:1<43::AID-MABI43>3.0.CO;2-8
King, 1999, Monoclonal antibody conjugates of doxorubicin prepared with branched linkers: a novel method for increasing the potency of doxorubicin immunoconjugates, Bioconjug. Chem., 10, 279, 10.1021/bc980100i
Luo, 2002, Targeted delivery of doxorubicin by HPMA copolymer hyaluronan bioconjugates, Pharm. Res., 19, 396, 10.1023/A:1015170907274
Pechar, 2001, Enzymatically degradable PEG multiblock copolymers with hydrazone attached doxorubicin in cancer therapy, J. Control. Release, 72, 225
Roseeuw, 2001, Modified poly[N5-(2-hydroxyethyl-l-glutamine)] as carrier for macromolecular prodrugs, J. Control. Release, 72, 257
Shen, 1981, cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing from a lysosomotropic conjugate, Biochem. Biophys. Res. Commun., 102, 1048, 10.1016/0006-291X(81)91644-2
Yang, 1988, Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xenografts in nude mice, Proc. Natl. Acad. Sci. USA, 85, 1189, 10.1073/pnas.85.4.1189
Choi, 1999, Synthesis of HPMA copolymer containing adriamycin bound via an acid-labile spacer and its activity toward human ovarian carcinoma cells, J. Bioact. Compat. Polym., 14, 447, 10.1177/088391159901400601
Clochard, 2000, Synthesis of soluble polymers for medicine that degrade by intramolecular acid catalysis, Macromol. Rapid Commun., 21, 853, 10.1002/1521-3927(20000801)21:12<853::AID-MARC853>3.0.CO;2-M
Lloyd, 2001, The lysosome/endosome membrane: a barrier to polymer-based drug delivery?, Macromol. Symp., 172, 29, 10.1002/1521-3900(200107)172:1<29::AID-MASY29>3.0.CO;2-1
Lloyd, 2000, Lysosome membrane permeability: implications for drug delivery, Adv. Drug Deliv. Rev., 41, 189, 10.1016/S0169-409X(99)00065-4
Kichler, 1997, Influence of membrane-active peptides on lipospermine/DNA complex mediated gene transfer, Bioconjug. Chem., 8, 213, 10.1021/bc970009z
Povoda, 2000, Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules, Adv. Drug Deliv. Rev., 41, 209, 10.1016/S0169-409X(99)00067-8
Wagner, 1999, Application of membrane-active peptides for nonviral gene delivery, Adv. Drug Deliv. Rev., 38, 279, 10.1016/S0169-409X(99)00033-2
Skehel, 2000, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem., 69, 531, 10.1146/annurev.biochem.69.1.531
Gottschalk, 1996, A novel DNA–peptide complex for efficient gene transfer and expression in mammalian cells, Gene Ther., 3, 448
Parente, 1990, Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA, Biochemistry, 29, 8720, 10.1021/bi00489a031
Turk, 2002, Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs, Biochim. Biophys. Acta, 1559, 56, 10.1016/S0005-2736(01)00441-2
Kuehne, 2001, Synthesis and characterization of membrane-active GALA–OKT9 conjugates, Bioconjug. Chem., 12, 742, 10.1021/bc010001w
Nicol, 1996, Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide, Biophys. J., 71, 3288, 10.1016/S0006-3495(96)79521-8
Nicol, 2000, Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles, Biophys. J., 78, 818, 10.1016/S0006-3495(00)76639-2
Simoes, 2002, Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides, J. Leukocyte Biol., 65, 270, 10.1002/jlb.65.2.270
Haensler, 1993, Polyamidoamine cascade polymers mediate efficient transfection of cells in culture, Bioconjug. Chem., 4, 372, 10.1021/bc00023a012
Wyman, 1997, Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers, Biochemistry, 36, 3008, 10.1021/bi9618474
Altan, 1999, Tamoxifen inhibits acidification in cells independent of the estrogen receptor, Proc. Natl. Acad. Sci. USA, 96, 4432, 10.1073/pnas.96.8.4432
Prokop, 2002, Maximizing the in vivo efficiency of gene transfer by means of nonviral polymeric gene delivery vehicles, J. Pharm. Sci., 91, 67, 10.1002/jps.1171
Wagner, 1998, Effects of membrane-active agents in gene delivery, J. Control. Release, 53, 155, 10.1016/S0168-3659(97)00249-6
Remey-Kristensen, 2001, Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes, Biochim. Biophys. Acta, 1514, 21, 10.1016/S0005-2736(01)00359-5
Godbey, 2001, Recent progress in gene delivery using non-viral transfer complexes, J. Control. Release, 72, 115, 10.1016/S0168-3659(01)00267-X
Nichol, 1999, Biodistribution and imaging of polyethyleneimine—a gene delivery agent, Drug Deliv., 6, 187, 10.1080/107175499266940
Kozlova, 2001, Interaction of a cationic polymer with negatively charge proteoliposomes, Biochim. Biophys. Acta, 1514, 139, 10.1016/S0005-2736(01)00381-9
Plank, 1996, Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery, Hum. Gene Ther., 7, 1437, 10.1089/hum.1996.7.12-1437
Malik, 2000, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, J. Control. Release, 65, 133, 10.1016/S0168-3659(99)00246-1
Pichon, 2001, Histidine-rich peptides and polymers for nucleic acids delivery, Adv. Drug Deliv. Rev., 53, 75, 10.1016/S0169-409X(01)00221-6
Putnam, 2001, Polymer-based gene delivery with low cytotoxicity by a unique balance of side chain termini, Proc. Natl. Acad. Sci. USA, 98, 1200, 10.1073/pnas.031577698
Pichon, 2000, Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides, Nucleic Acids Res., 28, 504, 10.1093/nar/28.2.504
Midoux, 1999, Efficient gene transfer by hystidylated polylysine/pDNA complexes, Bioconjug. Chem., 10, 406, 10.1021/bc9801070
Pack, 2000, Design of imidizole-containing endosomolytic biopolymers for gene delivery, Biotechnol. Bioeng., 67, 217, 10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q
Benns, 2000, pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer, Bioconjug. Chem., 11, 637, 10.1021/bc0000177
Murthy, 1998, Design of polymers to increase the efficiency of endosomal release of drugs, Proc. Int. Symp. Control. Release Bioact. Mater., 25, 224
Thomas, 1992, Polyelectrolyte-sensitized phospholipid vesicles, Acc. Chem. Res., 25, 336, 10.1021/ar00020a003
Thoms, 1994, Membrane solubilization by a hydrophobic polyelectrolyte: surface activity and membrane binding, Biophys. J., 67, 1101, 10.1016/S0006-3495(94)80575-2
Murthy, 1999, The design and synthesis of polymers for eukaryotic membrane disruption, J. Control. Release, 61, 137, 10.1016/S0168-3659(99)00114-5
Lackey, 1999, Hemolytic activity of pH-responsive polymer–streptavidin bioconjugates, Bioconjug. Chem., 10, 401, 10.1021/bc980109k
Cheung, 2001, A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer, Bioconjug. Chem., 12, 906, 10.1021/bc0100408
Schwartz, 2000, Peptide mediated cellular delivery, Curr. Opin. Mol. Ther., 2, 162
Morris, 2000, Translocating peptides and proteins and their use for gene delivery, Curr. Opin. Biotechnol., 11, 461, 10.1016/S0958-1669(00)00128-2
Schwarze, 2000, Protein transduction: unrestricted delivery into all cells?, Trends Cell Biol., 10, 290, 10.1016/S0962-8924(00)01771-2
Snyder, 2001, Protein/peptide transduction domains: potential to deliver large DNA molecules into cells, Curr. Opin. Mol. Ther., 3, 147
Fischer, 2001, Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation, Bioconjug. Chem., 12, 825, 10.1021/bc0155115
Vives, 1997, A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus, J. Biol. Chem., 272, 16010, 10.1074/jbc.272.25.16010
Efthymiadas, 1998, The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties, J. Biol. Chem., 273, 1623, 10.1074/jbc.273.3.1623
Gariepy, 2001, Vectorial delivery of macromolecules into cells using peptide-based vehicles, Trends Biotechnol., 19, 21, 10.1016/S0167-7799(00)01520-1
Wender, 2000, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters, Proc. Natl. Acad. Sci. USA, 97, 13003, 10.1073/pnas.97.24.13003
Anderson, 1993, Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide, Biochem. Biophys. Res. Commun., 194, 876, 10.1006/bbrc.1993.1903
Fawell, 1994, Tat-mediated delivery of heterologous proteins into cells, Proc. Natl. Acad. Sci. USA, 91, 664, 10.1073/pnas.91.2.664
Lewin, 2000, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nature Biotechnol., 18, 410, 10.1038/74464
Nori, 2001, Cytoplasmic delivery and nuclear targeting of HPMA copolymer–Tat conjugates to ovarian carcinoma cells, Proc. Int. Symp. Control. Release Bioact. Mater., 28, 854
Falnes, 2001, Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment, Biochemistry, 40, 4349, 10.1021/bi002443l
Derossi, 1998, Trojan peptides: the penetratin system for intracellular delivery, Trends Cell Biol., 8, 84, 10.1016/S0962-8924(97)01214-2
M. Magzoub, L.E. Goran Eriksson, A. Graslund, Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects on surface charge and peptide concentration, Biochim. Biophys. Acta (in press).
Magzoub, 2001, Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles, Biochim. Biophys. Acta, 1512, 77, 10.1016/S0005-2736(01)00304-2
Tyagi, 2001, Internalization of HIV-1 Tat requires cell surface heparin sulfate proteoglycans, J. Biol. Chem., 276, 3254, 10.1074/jbc.M006701200
Silhol, 2002, Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat, Eur. J. Biochem., 269, 494, 10.1046/j.0014-2956.2001.02671.x
Derossi, 1996, Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent, J. Biol. Chem., 271, 18188, 10.1074/jbc.271.30.18188
Hallbrink, 2001, Cargo delivery kinetics of cell-penetrating peptides, Biochim. Biophys. Acta, 1515, 101, 10.1016/S0005-2736(01)00398-4
Futaki, 2001, Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery, J. Biol. Chem., 276, 5836, 10.1074/jbc.M007540200
Niesner, 2002, Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 Tat peptides, Bioconjug. Chem., 13, 729, 10.1021/bc025517+
Keller, 2000, Targeting macromolecular therapeutics to specific cell organelles, ACS Symp. Ser., 752, 168, 10.1021/bk-2000-0752.ch017
Feldherr, 1998, Macromolecular exchanges between the nucleus and cytoplasm, J. Cell. Biochem. Suppl., 30/31, 214, 10.1002/(SICI)1097-4644(1998)72:30/31+<214::AID-JCB26>3.0.CO;2-Y
Gorlich, 1999, Transport between the cell nucleus and the cytoplasm, Annu. Rev. Cell. Dev. Biol., 15, 607, 10.1146/annurev.cellbio.15.1.607
Moroianu, 1999, Nuclear import and export pathways, J. Cell. Biochem. Suppl., 32/33, 76, 10.1002/(SICI)1097-4644(1999)75:32+<76::AID-JCB10>3.0.CO;2-Q
Stewart, 2001, Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import, FEBS Lett., 498, 145, 10.1016/S0014-5793(01)02489-9
Pouton, 1998, Nuclear import of polypeptides, polynucleotides and supramolecular complexes, Adv. Drug Deliv. Rev., 34, 51, 10.1016/S0169-409X(98)00050-7
Mattaj, 1998, Nucleocytoplasmic transport: the soluble phase, Annu. Rev. Biochem., 123, 265, 10.1146/annurev.biochem.67.1.265
Boulikas, 1993, Nuclear localization signals (NLS), Crit. Rev. Eukaryotic Gene Expr., 3, 193
Christophe, 2000, Nuclear targeting of proteins: how many different signals?, Cell. Signal., 12, 337, 10.1016/S0898-6568(00)00077-2
Hodel, 2001, Dissection of a nuclear localization signal, J. Biol. Chem., 276, 1317, 10.1074/jbc.M008522200
Salman, 2001, Kinetics and mechanism of DNA uptake into the cell nucleus, Proc. Natl. Acad. Sci. USA, 98, 7247, 10.1073/pnas.121067698
Zanta, 1999, Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus, Proc. Natl. Acad. Sci. USA, 96, 91, 10.1073/pnas.96.1.91
Ludtke, 1999, A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA, J. Cell. Sci., 112, 2033, 10.1242/jcs.112.12.2033
Peitz, 2002, Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes, Proc. Natl. Acad. Sci. USA, 99, 4489, 10.1073/pnas.032068699
Chaloin, 2001, Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide, Bioconjug. Chem., 12, 691, 10.1021/bc000125t
Moghimi, 2000, Recent advances in cellular, sub-cellular and molecular targeting, Adv. Drug Deliv. Rev., 41, 129, 10.1016/S0169-409X(99)00060-5
Murthy, 2000, Drug delivery to mitochondria; the key to mitochondrial medicine, Adv. Drug Deliv. Rev., 41, 235, 10.1016/S0169-409X(99)00069-1