Design strategies for shape memory polymers

Current Opinion in Chemical Engineering - Tập 2 Số 1 - Trang 103-111 - 2013
Xiaohua Luo1, Patrick T. Mather1
1Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lendlein, 2002, Shape-memory polymers, Angew Chem Int Ed, 41, 2034, 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

Dietsch, 2007, A review – features and benefits of shape memory polymers (SMPs), J Adv Mater, 39, 3

Liu, 2007, Review of progress in shape-memory polymers, J Mater Chem, 17, 1543, 10.1039/b615954k

Sokolowski, 2007, Medical applications of shape memory polymers, Biomed Mater, 2, S23, 10.1088/1748-6041/2/1/S04

Behl, 2007, Actively moving polymers, Soft Matter, 3, 58, 10.1039/B610611K

Rousseau, 2008, Challenges of shape memory polymers: a review of the progress toward overcoming SMP's limitations, Polym Eng Sci, 48, 2075, 10.1002/pen.21213

Ratna, 2008, Recent advances in shape memory polymers and composites: a review, J Mater Sci, 43, 254, 10.1007/s10853-007-2176-7

Mather, 2009, Shape memory polymer research, Annu Rev Mater Res, 39, 445, 10.1146/annurev-matsci-082908-145419

Liu, 2009, Review of electro-active shape-memory polymer composite, Compos Sci Technol, 69, 2064, 10.1016/j.compscitech.2008.08.016

Leng, 2009, Shape-memory polymers – a class of novel smart materials, MRS Bull, 34, 848, 10.1557/mrs2009.235

Meng, 2009, A review of shape memory polymer composites and blends, Compos Part A Appl Sci Manuf, 40, 1661, 10.1016/j.compositesa.2009.08.011

Behl, 2010, Multifunctional shape-memory polymers, Adv Mater, 22, 3388, 10.1002/adma.200904447

Hu, 2010, A review of actively moving polymers in textile applications, J Mater Chem, 20, 3346, 10.1039/b922872a

Small, 2010, Biomedical applications of thermally activated shape memory polymers, J Mater Chem, 20, 3356, 10.1039/b923717h

Huang, 2010, Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review, J Mater Chem, 20, 3367, 10.1039/b922943d

Lendlein, 2010, Shape-memory polymers as a technology platform for biomedical applications, Expert Rev Med Dev, 7, 357, 10.1586/erd.10.8

Leng, 2011, Shape-memory polymers and their composites: stimulus methods and applications, Prog Mater Sci, 56, 1077, 10.1016/j.pmatsci.2011.03.001

Xie, 2011, Recent advances in polymer shape memory, Polymer, 52, 4985, 10.1016/j.polymer.2011.08.003

Hu, 2012, A review of stimuli-responsive polymers for smart textile applications, Smart Mater Struct, 21, 053001, 10.1088/0964-1726/21/5/053001

Sun, 2012, Stimulus-responsive shape memory materials: a review, Mater Des, 33, 577, 10.1016/j.matdes.2011.04.065

Wornyo, 2007, Nanoindentation of shape memory polymer networks, Polymer, 48, 3213, 10.1016/j.polymer.2007.03.029

Reddy, 2007, Bioinspired surfaces with switchable adhesion, Adv Mater, 19, 3833, 10.1002/adma.200700733

Davis, 2011, Dynamic cell behavior on shape memory polymer substrates, Biomaterials, 32, 2285, 10.1016/j.biomaterials.2010.12.006

Le, 2011, Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ɛ-caprolactone) surfaces, Adv Mater, 23, 3278, 10.1002/adma.201100821

Burke, 2010, Soft shape memory in main-chain liquid crystalline elastomers, J Mater Chem, 20, 3449, 10.1039/b924050k

Ishida, 2012, Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure, J Polym Sci Part B Polym Phys, 50, 387, 10.1002/polb.23021

Li, 1999, Shape memory effect of ethylene – vinyl acetate copolymers, J Appl Polym Sci, 71, 1063, 10.1002/(SICI)1097-4628(19990214)71:7<1063::AID-APP4>3.0.CO;2-A

Liu, 2002, Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior, Macromolecules, 35, 9868, 10.1021/ma021141j

Kolesov, 2008, Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes, Express Polym Lett, 2, 461, 10.3144/expresspolymlett.2008.56

Chung, 2008, Two-way reversible shape memory in a semicrystalline network, Macromolecules, 41, 184, 10.1021/ma071517z

Yu, 2009, A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity, Nanotechnology, 20, 235702, 10.1088/0957-4484/20/23/235702

Li, 2011, Semi-crystalline two-way shape memory elastomer, Polymer, 52, 5320, 10.1016/j.polymer.2011.09.030

Cuevas, 2011, Development and characterization of semi-crystalline polyalkenamer based shape memory polymers, Smart Mater Struct, 20, 035003, 10.1088/0964-1726/20/3/035003

Voit, 2010, Radiation crosslinked shape-memory polymers, Polymer, 51, 3551, 10.1016/j.polymer.2010.05.049

Ware, 2010, Effects of sensitizer length on radiation crosslinked shape-memory polymers, Radiat Phys Chem, 79, 446, 10.1016/j.radphyschem.2009.10.006

Zhu, 2006, Shape memory behaviour of radiation-crosslinked PCL/PMVS blends, Radiat Phys Chem, 75, 443, 10.1016/j.radphyschem.2005.10.004

Zhu, 2003, Shape-memory effects of radiation crosslinked poly (ɛ-caprolactone), J Appl Polym Sci, 90, 1589, 10.1002/app.12736

Hearon, 2011, Post-polymerization crosslinked polyurethane shape memory polymers, J Appl Polym Sci, 121, 144, 10.1002/app.33428

Liu, 2002, Thermomechanical characterization of a tailored series of shape memory polymers, J Appl Med Plast, 6, 47

Yakacki, 2007, Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications, Biomaterials, 28, 2255, 10.1016/j.biomaterials.2007.01.030

Safranski, 2008, Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks, Polymer, 49, 4446, 10.1016/j.polymer.2008.07.060

Yakacki, 2008, Deformation limits in shape-memory polymers, Adv Eng Mater, 10, 112, 10.1002/adem.200700184

Ortega, 2008, Structure–property relationships in photopolymerizable polymer networks: effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system, J Appl Polym Sci, 110, 1559, 10.1002/app.28732

Yakacki, 2008, Strong, tailored, biocompatible shape-memory polymer networks, Adv Funct Mater, 18, 2428, 10.1002/adfm.200701049

Smith, 2009, On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications, J Appl Polym Sci, 114, 2711, 10.1002/app.30565

Smith, 2009, The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions, Polymer, 50, 5112, 10.1016/j.polymer.2009.08.040

Voit, 2010, High-strain shape-memory polymers, Adv Funct Mater, 20, 162, 10.1002/adfm.200901409

Smith, 2011, Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments, Acta Biomater, 7, 558, 10.1016/j.actbio.2010.09.001

Xie, 2009, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers, Polymer, 50, 1852, 10.1016/j.polymer.2009.02.035

Rousseau, 2010, Shape memory epoxy: composition, structure, properties and shape memory performances, J Mater Chem, 20, 3431, 10.1039/b923394f

Leonardi, 2011, Shape memory epoxies based on networks with chemical and physical crosslinks, Eur Polym J, 47, 362, 10.1016/j.eurpolymj.2010.12.009

Song, 2011, Synthesis and thermomechanical research of shape memory epoxy systems, Mater Sci Eng A, 529, 29, 10.1016/j.msea.2011.08.049

Feldkamp, 2011, Effect of chemical composition on the deformability of shape-memory epoxies, Macromol Mater Eng, 296, 1128, 10.1002/mame.201100066

Nair, 2010, Photopolymerized thiol-ene systems as shape memory polymers, Polymer, 51, 4383, 10.1016/j.polymer.2010.07.027

Lin, 1999, Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model, J Appl Polym Sci, 73, 1305, 10.1002/(SICI)1097-4628(19990815)73:7<1305::AID-APP24>3.0.CO;2-5

Chen, 2002, Thermosetting polyurethanes with water-swollen and shape memory properties, J Appl Polym Sci, 84, 1504, 10.1002/app.10357

Lendlein, 2001, AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties, Proc Natl Acad Sci USA, 98, 842

Rousseau, 2003, Shape memory effect exhibited by smectic-C liquid crystalline elastomers, J Am Chem Soc, 125, 15300, 10.1021/ja039001s

Rousseau, 2005, Tailored phase transitions via mixed-mesogen liquid crystalline polymers with silicon-based spacers, Macromolecules, 38, 4103, 10.1021/ma048327y

Kim, 1996, Polyurethanes having shape memory effects, Polymer, 37, 5781, 10.1016/S0032-3861(96)00442-9

Lendlein, 2002, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, 296, 1673, 10.1126/science.1066102

Hu, 2005, Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions, Polym Int, 54, 600, 10.1002/pi.1745

Mohr, 2006, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles, Proc Natl Acad Sci USA, 103, 3540, 10.1073/pnas.0600079103

Knight, 2008, Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane, Biomacromolecules, 9, 2458, 10.1021/bm8004935

Wu, 2010, PEG–POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation, Macromolecules, 43, 7637, 10.1021/ma101336c

Liu, 2003, Thermomechanical characterization of blends of poly(vinyl acetate) with semicrystalline polymers for shape memory applications, 1962

Behl, 2009, Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components, Soft Matter, 5, 676, 10.1039/B810583A

Li, 2009, Thermostimulative shape-memory effect of reactive compatibilized high-density polyethylene/poly (ethylene terephthalate) blends by an ethylene–butyl acrylate–glycidyl methacrylate terpolymer, J Appl Polym Sci, 112, 3341, 10.1002/app.29530

Zhang, 2009, A novel type of shape memory polymer blend and the shape memory mechanism, Polymer, 50, 1596, 10.1016/j.polymer.2009.01.011

Weiss, 2008, New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass, Macromolecules, 41, 2978, 10.1021/ma8001774

Campo, 2006, Shape memory binary blends: compositionally tailored fixing and recovery, 1510

Luo, 2009, Preparation and characterization of shape memory elastomeric composites, Macromolecules, 42, 7251, 10.1021/ma9015888

Luo, 2010, Triple-shape polymeric composites (TSPCs), Adv Funct Mater, 20, 2649, 10.1002/adfm.201000052

Behl, 2009, One-step process for creating triple-shape capability of AB polymer networks, Adv Funct Mater, 19, 102, 10.1002/adfm.200800850

Xie, 2009, Revealing triple-shape memory effect by polymer bilayers, Macromol Rapid Commun, 30, 1823, 10.1002/marc.200900409

Qin, 2009, Combined one-way and two-way shape memory in a glass-forming Nematic network, Macromolecules, 42, 273, 10.1021/ma8022926

BellinI, 2006, Lendlein a: polymeric triple-shape materials, Proc Natl Acad Sci USA, 103, 18043, 10.1073/pnas.0608586103

Behl, 2010, Triple-shape polymers, J Mater Chem, 20, 3335, 10.1039/b922992b

Pretsch, 2010, Triple-shape properties of a thermoresponsivepoly(ester urethane), Smart Mater Struct, 19, 015006, 10.1088/0964-1726/19/1/015006

Chen, 2009, Triple shape memory effect in multiple crystalline polyurethanes, Polym Adv Technol, 21, 377, 10.1002/pat.1523

Luo, 2011, Achieving shape memory: reversible behaviors of cellulose–PU blends in wet–dry cycles, J Appl Polym Sci, 125, 657, 10.1002/app.36292

Luo, 2011, Polymeric shape memory nanocomposites with heterogeneous twin switches, Macromol Chem Phys, 212, 1981, 10.1002/macp.201100292

Luo X, Mather PT: Shape memory assisted self-healing coatings, in preparation.

Mather PT, Luo X: Self-healing product. US Patent Application 12/644,766.

Luo X: Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications. PhD Dissertation. Syracuse University; 2010.

Luo, 2010, Conductive shape memory nanocomposites for high speed electrical actuation, Soft Matter, 6, 2146, 10.1039/c001295e

Stone, 2012, All-organic, stimuli-responsive polymer composites with electrospun fiber fillers, ACS Macro Lett, 1, 80, 10.1021/mz200049v

Wang, 2012, Cooling-/water-responsive shape memory hybrids, Compos Sci Technol, 72, 1178, 10.1016/j.compscitech.2012.03.027