Design recommendations for the rehabilitation of an urban canyon in a subtropical climate region using aerial thermography and simulation tools

Energy and Buildings - Tập 298 - Trang 113525 - 2023
Marta Videras Rodriguez1, Sergio Gomez Melgar2, Jose Manuel Andujar Marquez2
1Programa de Doctorado de Ciencia y Tecnología Industrial y Environmental, Centro de Investigación en Tecnología, Energía y Sostenibilidad, CITES (Research Centre for Technology, Energy and Sustainability), Universidad de Huelva, Campus El Carmen, 21071 Huelva, Spain
2TEP192 Control y Robótica, Centro de Investigación en Tecnología, Energía y Sostenibilidad, CITES (Research Centre for Technology, Energy and Sustainability), Universidad de Huelva, Campus El Carmen, 21071 Huelva, Spain

Tài liệu tham khảo

Wang, 2016, Comparing the effects of urban heat island mitigation strategies for Toronto, Canada, Energ. Build., 114, 2, 10.1016/j.enbuild.2015.06.046 Gulyás, 2006, Assessment of the microclimatic and human comfort conditions in a complex urban environment: Modelling and measurements, Build. Environ., 41, 1713, 10.1016/j.buildenv.2005.07.001 Koppe, 2004 Fanger, 1972 International Organisation for Standardisation, ISO 7730:1994 Moderate thermal environments: determination of PMV and PPD indices and specification of the conditions for thermal comfort. Geneva, Switzerland, 1994. Höppe, 1999, The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment, Int. J. Biometeorol., 43, 71, 10.1007/s004840050118 J. Pickup and R. D. de Dear, An Outdoor Thermal Comfort Index (Out-Set*) -Part I –the Model and Its Assumptions, 15th ICB ICUC, no. January 1999, pp. 1–7, 2000. Jendritzky, 2012, UTCI - why another thermal index ?, Int. J. Biometeorol., 56, 421, 10.1007/s00484-011-0513-7 Jendritzky, 1981, A model analysing the urban thermal environment in physiologically significant termsEin physiologisch relevarites Analysenmodell für die thermischen Bedingungen in der Stadtklimatologie, Arch. Meteorol. Geophys. Bioclimatol. Ser. B, 29, 313, 10.1007/BF02263308 Salata, 2015, Evaluation of different urban microclimate mitigation strategies through a PMV analysis, Sustain., 7, 9012, 10.3390/su7079012 Hashim, 2016, Determination of thermal comfort for social impact assessment: Case study in Kota Damansara, Selangor, Malaysia, Am. J. Appl. Sci., 13, 1156, 10.3844/ajassp.2016.1156.1170 Sangkertadi, 2014, New equation for estimating outdoor thermal comfort in humid-tropical environment, Eur. J. Sustain. Dev., 3, 43, 10.14207/ejsd.2014.v3n4p43 Canan, 2019, Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey), Build. Environ., 148, 212, 10.1016/j.buildenv.2018.11.008 Mi, 2020, Outdoor thermal benchmarks and their application to climate-responsive designs of residential open spaces in a cold region of China, Build. Environ., 169, 106592, 10.1016/j.buildenv.2019.106592 Abd Elraouf, 2022, The impact of urban geometry on outdoor thermal comfort in a hot-humid climate, Build. Environ., 225, 109632, 10.1016/j.buildenv.2022.109632 Ali-Toudert, 2007, Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons, Sol. Energy, 81, 742, 10.1016/j.solener.2006.10.007 Ali-Toudert, 2007, Thermal comfort in an east-west oriented street canyon in Freiburg (Germany) under hot summer conditions, Theor. Appl. Climatol., 87, 223, 10.1007/s00704-005-0194-4 Ali-Toudert, 2006, Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate, Build. Environ., 41, 94, 10.1016/j.buildenv.2005.01.013 Krüger, 2013, Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK, Int. J. Biometeorol., 57, 521, 10.1007/s00484-012-0578-y Spagnolo, 2003, A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia, Build. Environ., 38, 721, 10.1016/S0360-1323(02)00209-3 Tsitoura, 2014, Evaluation of comfort conditions in urban open spaces. Application in the island of Crete, Energy Convers. Manag., 86, 250, 10.1016/j.enconman.2014.04.059 Fang, 2018, Investigation into sensitivities of factors in outdoor thermal comfort indices, Build. Environ., 128, 129, 10.1016/j.buildenv.2017.11.028 Pantavou, 2014, Empirical calibration of thermal indices in an urban outdoor Mediterranean environment, Build. Environ., 80, 283, 10.1016/j.buildenv.2014.06.001 Bröde, 2012, Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil, Int. J. Biometeorol., 56, 471, 10.1007/s00484-011-0452-3 Salata, 2016, Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy, Build. Environ., 96, 46, 10.1016/j.buildenv.2015.11.023 Golasi, 2016, Thermal perception in the mediterranean area: Comparing the mediterranean outdoor comfort index (moci) to other outdoor thermal comfort indices, Energies, 9, pp, 10.3390/en9070550 Corgnati, 2007, Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort, Build. Environ., 42, 951, 10.1016/j.buildenv.2005.10.027 Buratti, 2009, Adaptive analysis of thermal comfort in university classrooms: Correlation between experimental data and mathematical models, Build. Environ., 44, 674, 10.1016/j.buildenv.2008.06.001 Corgnati, 2009, Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches, Build. Environ., 44, 785, 10.1016/j.buildenv.2008.05.023 Dias Pereira, 2014, Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results, Build. Environ., 81, 69, 10.1016/j.buildenv.2014.06.008 Johansson, 2014, Instruments and methods in outdoor thermal comfort studies - The need for standardization, Urban Clim., 10, 346, 10.1016/j.uclim.2013.12.002 Salata, 2015, How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study, Energ. Buildings, 99, 32, 10.1016/j.enbuild.2015.04.010 Salata, 2016, Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data, Sustain. Cities Soc., 26, 318, 10.1016/j.scs.2016.07.005 Karakounos, 2018, The influence of bioclimatic urban redevelopment on outdoor thermal comfort, Energ. Buildings, 158, 1266, 10.1016/j.enbuild.2017.11.035 Tsoka, 2018, Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review, Sustain. Cities Soc., 43, 55, 10.1016/j.scs.2018.08.009 R. Soares, H. Corvacho, F. Alves, Summer thermal conditions in outdoor public spaces: A case study in a mediterranean climate, Sustain., 13 (10), 2021, doi: 10.3390/su13105348. Elraouf, 2022, Evaluating urban outdoor thermal comfort: a validation of ENVI-met simulation through field measurement, J. Build. Perform. Simul., 15, 268, 10.1080/19401493.2022.2046165 Andreou, 2013, Thermal comfort in outdoor spaces and urban canyon microclimate, Renew. Energy, 55, 182, 10.1016/j.renene.2012.12.040 Abdollahzadeh, 2021, Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney, Front. Archit. Res., 10, 394, 10.1016/j.foar.2020.11.006 Yoshida, 1990, Field measurements on energy balance of an urban canyon in the summer season, Energ. Build., 15, 417, 10.1016/0378-7788(90)90016-C Yang, 2013, Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces, Build. Environ., 60, 93, 10.1016/j.buildenv.2012.11.008 Santamouris, 1999, Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions, Atmos. Environ., 33, 4503, 10.1016/S1352-2310(99)00187-9 Emmanuel, 2007, Urban shading - A design option for the tropics? A study in Colombo, Sri Lanka, Int. J. Climatol., 27, 1995, 10.1002/joc.1609 Matzarakis, 1999, Applications of a universal thermal index: Physiological equivalent temperature, Int. J. Biometeorol., 43, 76, 10.1007/s004840050119 E. Gatto et al., Analysis of urban greening scenarios for improving outdoor thermal comfort in neighbourhoods of lecce (Southern Italy), Climate, 9 (7), 2021, doi: 10.3390/cli9070116. Yin, 2022, Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China, Urban Clim., 43, 101165, 10.1016/j.uclim.2022.101165 Alexandri, 2008, Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates, Build. Environ., 43, 480, 10.1016/j.buildenv.2006.10.055 Perini, 2014, Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort, Urban For. Urban Green., 13, 495, 10.1016/j.ufug.2014.03.003 Georgakis, 2014, Studying the effect of ‘cool’ coatings in street urban canyons and its potential as a heat island mitigation technique, Sustain. Cities Soc., 13, 20, 10.1016/j.scs.2014.04.002 Salata, 2017, Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment, Sustain. Cities Soc., 30, 79, 10.1016/j.scs.2017.01.006 Elgheznawy, 2021, The impact of sun sail-shading strategy on the thermal comfort in school courtyards, Build. Environ., 202, 108046, 10.1016/j.buildenv.2021.108046 M. Videras Rodríguez, S. G. Melgar, A. S. Cordero, and J. M. A. Márquez, A Critical review of unmanned aerial vehicles (UAVs) use in architecture and urbanism: scientometric and bibliometric analysis, Appl. Sci., vol. 11, no. 21, p. 9966, Oct. 2021, doi: 10.3390/app11219966. Peel, 2007, Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633, 10.5194/hess-11-1633-2007 Annual climatological values. Huelva, Ronda Este - Agencia Estatal de Meteorología (AEMET). Gobierno de España. http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=4642E&k=and (accessed Feb. 16, 2022). Verein Deutscher Ingenieure, 2008 International Organisation for Standardisation, ISO 7730:2005 Ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva, Switzerland, 2005. American Society of Heating Refrigerating and Air-Conditioning Engineers, ASHRAE Standard 55:2010 Thermal environmental conditions for human occupancy. Atlanta, GA, USA, 2010. American Society of Heating Refrigerating and Air-Conditioning Engineers, ASHRAE Handbook Fundamentals, Chapter 9: Thermal comfort. Atlanta GA USA, 2009. Yan, 1996, The clo : a utilitarian unit to measure weather/climate comfort, Int. J. Climatol., 16, 1045, 10.1002/(SICI)1097-0088(199609)16:9<1045::AID-JOC73>3.0.CO;2-O H. Guo, D. Aviv, M. Loyola, E. Teitelbaum, N. Houchois, F. Meggers, On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review, Renew. Sustain. Energy Rev., 117 (December) 2018, 109207, 2020, doi: 10.1016/j.rser.2019.06.014. Rodríguez, 2022, Assessment of aerial thermography as a method of in situ measurement of radiant heat transfer in urban public spaces, Sustain. Cities Soc. Enescu, 2017, A review of thermal comfort models and indicators for indoor environments, Renew. Sustain. Energy Rev., 79, 1353, 10.1016/j.rser.2017.05.175 Harvey, 2007, First-principles calculation of the air-water second virial coefficient, Int. J. Thermophys., 28, 556, 10.1007/s10765-007-0197-8 Oertel, 2015, Assessment of predicted versus measured thermal comfort and optimal comfort ranges in the outdoor environment in the temperate climate of Glasgow, UK, Build. Serv. Eng. Res. Technol., 36, 482, 10.1177/0143624414564444 Becker, 2003, Calculated and observed human thermal sensation in an extremely hot and dry climate, Energ. Buildings, 35, 747, 10.1016/S0378-7788(02)00228-1 Bruse, 1998, Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model, Environ. Model Softw., 13, 373, 10.1016/S1364-8152(98)00042-5 Willmott, 1981, On the validation of models, Phys. Geogr., 2, 184, 10.1080/02723646.1981.10642213 Castro, 2017, Evaluation of the thermal performance of different cold materials for urban paving, Ceramica, 63, 203, 10.1590/0366-69132017633662063