Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries

Energy Storage Materials - Tập 57 - Trang 607-617 - 2023
Johannes Kriegler1, Elena Jaimez-Farnham1, Maximilian Scheller2, Enkhtsetseg Dashjav3, Fabian Konwitschny1, Lovis Wach1, Lucas Hille1, Frank Tietz3,4, Michael F. Zaeh1
1Technical University of Munich, Germany; TUM School of Engineering and Design, Department of Mechanical Engineering, Institute for Machine Tools and Industrial Management, Munich, Boltzmannstr. 15, 85748 Garching, Germany
2Technical University of Munich, Germany; TUM School of Engineering and Design, Department of Energy and Process Engineering, Institute for Electrical Energy Storage Technology, Arcisstraße 21, 80333 Munich, Germany
3Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research, IEK-1: Material Synthesis and Processing, Jülich, Germany
4Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research, IEK-12: Helmholtz-Institute Münster, Jülich, Germany

Tài liệu tham khảo

Varzi, 2020, Current status and future perspectives of lithium metal batteries, J. Power Sources, 480, 228803, 10.1016/j.jpowsour.2020.228803 Janek, 2016, A solid future for battery development, Nat. Energy, 1, 1, 10.1038/nenergy.2016.141 Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K Placke, 2017, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density, J. Solid State Electrochem., 21, 1939, 10.1007/s10008-017-3610-7 Betz, 2019, Theoretical versus practical energy: A plea for more transparency in the energy calculation of different rechargeable battery systems, Adv. Energy Mater., 9, 1803170, 10.1002/aenm.201803170 Manthiram, 2017, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2016.103 M.V. Reddy, C.M. Julien, A. Mauger, K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: A review. Nanomaterials (2020) 10 (Basel), doi:10.3390/nano10081606. Zhu, 2015, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685, 10.1021/acsami.5b07517 McCloskey, 2015, Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes, J. Phys. Chem. Lett., 6, 4581, 10.1021/acs.jpclett.5b01814 Jiang, 2020, Tape-Casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries, Adv. Mater., 32 Balaish, 2021, Processing thin but robust electrolytes for solid-state batteries, Nat. Energy, 6, 227, 10.1038/s41560-020-00759-5 Dashjav, 2020, Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheets, J. Eur. Ceram. Soc., 40, 1975, 10.1016/j.jeurceramsoc.2020.01.017 Ohta, 2014, Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery, J. Power Sources, 265, 40, 10.1016/j.jpowsour.2014.04.065 Miara, 2016, About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature, ACS Appl. Mater. Interfaces, 8, 26842, 10.1021/acsami.6b09059 M. Gellert, E. Dashjav, D. Gruener, Q. Ma, F. Tietz, Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. Ionics 24 (2018) 1001–1006 Kiel, doi:10.1007/s11581-017-2276-6. Tsai, 2019, A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes, Sustain. Energy Fuels, 3, 280, 10.1039/C8SE00436F E.D. Wachsman, L. Hu, V. Thangadurai, 1498380912969103209-US20140287305A1, 2014, accessed 5 October 2022. van den Broek, 2016, Interface-Engineered All-Solid-State Li-Ion batteries based on Garnet-Type Fast Li + Conductors, Adv. Energy Mater., 6, 1600736, 10.1002/aenm.201600736 Fu, 2017, Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries, Energy Environ. Sci., 10, 1568, 10.1039/C7EE01004D Ren, 2017, Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries, Ionics, 23, 2521, 10.1007/s11581-017-2224-5 Hitz, 2019, High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture, Mater. Today, 22, 50, 10.1016/j.mattod.2018.04.004 Kim, 2020, All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries, Energy Environ. Sci., 13, 4930, 10.1039/D0EE02062A Hara, 2009, Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4, J. Power Sources, 189, 485, 10.1016/j.jpowsour.2008.12.048 H. Nakano, K. Dokko, M. Hara, Y. Isshiki, K. Kanamura, Three-dimensionally ordered composite electrode between LiMn2O4 and Li1.5Al0.5Ti1.5(PO4)3. Ionics 14 (2008) 173–177 (Kiel), doi:10.1007/s11581-007-0180-1. Kotobuki, 2011, A novel structure of ceramics electrolyte for future lithium battery, J. Power Sources, 196, 9815, 10.1016/j.jpowsour.2011.07.005 Fu, 2019, Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network, Compos. Sci. Technol., 184, 107863, 10.1016/j.compscitech.2019.107863 Yang, 2018, Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework, Proc. Natl. Acad. Sci. U. S. A., 115, 3770, 10.1073/pnas.1719758115 Ji, 2022, 3D vertically aligned microchannel three-layer all ceramic lithium ion battery for high-rate and long-cycle electrochemical energy storage, Small, 18, 1, 10.1002/smll.202107442 Kotobuki, 2010, Fabrication of three-dimensional battery using ceramic electrolyte with honeycomb structure by sol-gel process, J. Electrochem. Soc., 157, 682, 10.1149/1.3308459 Zhang, 2020, Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures, Energy Storage Mater, 24, 714, 10.1016/j.ensm.2019.06.006 Shen, 2019, Oriented porous LLZO 3D structures obtained by freeze casting for battery applications, J. Mater. Chem. A, 7, 20861, 10.1039/C9TA06520B Ihrig, 2021, Polymer–Ceramic composite cathode with enhanced storage capacity manufactured by field-assisted sintering and infiltration, ACS Appl. Energy Mater., 4, 10428, 10.1021/acsaem.1c02667 Hlushkou, 2018, The influence of void space on ion transport in a composite cathode for all-solid-state batteries, J. Power Sources, 396, 363, 10.1016/j.jpowsour.2018.06.041 McOwen, 2018, 3D-Printing electrolytes for solid-state batteries, Adv. Mater., 30, 10.1002/adma.201707132 Shoji, 2016, Fabrication of All-Solid-State Lithium-Ion cells using Three-Dimensionally structured solid electrolyte Li7La3Zr2O12 pellets, Front. Energy Res., 4, 10.3389/fenrg.2016.00032 Shen, 2020, Scalable Freeze-Tape-Casting fabrication and pore structure analysis of 3D LLZO Solid-State electrolytes, ACS Appl. Mater. Interfaces, 12, 3494, 10.1021/acsami.9b11780 Hille, 2021, Laser structuring of graphite anodes and NMC cathodes – Proportionate influence on electrode characteristics and cell performance, Electrochim. Acta, 392, 139002, 10.1016/j.electacta.2021.139002 Hille, 2023, Integration of laser structuring into the electrode manufacturing process chain for lithium-ion batteries, J. Power Sources, 556, 10.1016/j.jpowsour.2022.232478 Hille, 2022, Influence of laser structuring and calendering of graphite anodes on electrode properties and cell performance, J. Electrochem. Soc., 10.1149/1945-7111/ac725c J. Kriegler, L. Hille, S. Stock, L. Kraft, J. Hagemeister, J.B. Habedank, A. Jossen, M.F. Zaeh, Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes. Appl. Energy 303 (2021) 117693–1–117693-16, doi:10.1016/j.apenergy.2021.117693. Habedank, 2019, Enhanced fast charging and reduced Lithium-Plating by Laser-Structured Anodes for Lithium-Ion batteries, J. Electrochem. Soc., 166, A3940, 10.1149/2.1241915jes Binggong, 2022, Interface Modification of NASICON-structured Li1.5Al0.5Ge1.5(PO4)3 (LAGP) by Femtosecond Laser Structuring and Ionic Liquid, Int. J. Electrochem. Sci., 17 R. Xu, F. Liu, Y. Ye, H. Chen, R.R. Yang, Y. Ma, W. Huang, J. Wan, Y. Cui, A morphologically stable Li/Electrolyte interface for all-solid-state batteries enabled by 3D-Micropatterned garnet. Adv. Mater. (2021) 2104009–1–2104009-10, doi:10.1002/adma.202104009. Beaupain, 2021, Reaction of Li1.3Al0.3Ti1.7(PO4)3 and LiNi0.6Co0.2Mn0.2O2 in Co-Sintered composite cathodes for solid-state batteries, ACS Appl. Mater. Interfaces, 13, 47488, 10.1021/acsami.1c11750 Ihrig, 2022, Increasing the performance of all-solid-state Li batteries by infiltration of Li-ion conducting polymer into LFP-LATP composite cathode, J. Power Sources, 543, 231822, 10.1016/j.jpowsour.2022.231822 Hartmann, 2013, Degradation of NASICON-Type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes, J. Phys. Chem. C, 117, 21064, 10.1021/jp4051275 Jin, 2020, Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries, J. Power Sources, 460, 228125, 10.1016/j.jpowsour.2020.228125 Wu, 2019, Flexible polymer electrolyte for cost‐effective fabrication of all‐solid‐state lithium metal batteries, Adv. Energy Mater., 9, 1902767, 10.1002/aenm.201902767 Dashjav, 2018, The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates, Solid State Ion, 321, 83, 10.1016/j.ssi.2018.04.010 Gross, 2022, Conductivity, microstructure and mechanical properties of tape-cast LATP with LiF and SiO2 additives, J. Mater. Sci., 57, 925, 10.1007/s10853-021-06773-6 Kwade, 2018, Current status and challenges for automotive battery production technologies, Nat. Energy, 3, 290, 10.1038/s41560-018-0130-3 Andre, 2015, Future generations of cathode materials: an automotive industry perspective, J. Mater. Chem. A, 3, 6709, 10.1039/C5TA00361J Perry, 1999, Ultrashort-pulse laser machining of dielectric materials, J. Appl. Phys., 85, 6803, 10.1063/1.370197 Kriegler, 2022, Pulsed laser ablation of a ceramic electrolyte for all-solid-state batteries, Procedia CIRP, 111, 800, 10.1016/j.procir.2022.08.132 A. Narazaki, H. Takada, D. Yoshitomi, K. Torizuka, Y. Kobayashi, Ultrafast laser processing of ceramics: Comprehensive survey of laser parameters. J. Laser Appl. 33 (2021) 012009–1–012009-6, doi:10.2351/7.0000310. H.-.J. Noh, S. Youn, C.S. Yoon, Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233 (2013) 121–130, doi:10.1016/j.jpowsour.2013.01.063. Homann, 2020, Elimination of “Voltage Noise” of Poly (Ethylene Oxide)-Based solid electrolytes in high-voltage lithium batteries: Linear versus network polymers, iScience, 23, 101225, 10.1016/j.isci.2020.101225 Koerver, 2017, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29, 5574, 10.1021/acs.chemmater.7b00931 Bielefeld, 2022, Influence of lithium ion kinetics, particle morphology and voids on the electrochemical performance of composite cathodes for all-solid-state batteries, J. Electrochem. Soc., 10.1149/1945-7111/ac50df Rosen, 2022, Free standing dual phase cathode tapes – scalable fabrication and microstructure optimization of garnet-based ceramic cathodes, J. Mater. Chem. A, 10, 2320, 10.1039/D1TA07194G Ren, 2023, Oxide‐Based Solid‐State batteries: A perspective on composite cathode architecture, Adv. Energy Mater., 13, 2201939, 10.1002/aenm.202201939