Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries

Nature Chemistry - Tập 3 Số 7 - Trang 546-550 - 2011
Jin Suntivich1, Hubert A. Gasteiger2,3, Naoaki Yabuuchi2, Haruyuki Nakanishi4, John B. Goodenough5, Yang Shao‐Horn2
1Materials Science and Engineering Department and Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 31-056, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
2Mechanical Engineering Department and Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, USA
3Present address: Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany,
4Fuel Cell System Development Division, Toyota Motor Corporation, Susono, Japan
5Texas Materials Institute, University of Texas at Austin, Austin, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gasteiger, H. A. & Markovic, N. M. Just a dream-or future reality? Science 324, 48–49 (2009).

Whitesides, G. M. & Crabtree, G. W. Don't forget long-term fundamental research in energy. Science 315, 796–798 (2007).

Gray, H. B. Powering the planet with solar fuel. Nature Chem. 1, 7 (2009).

Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

Service, R. F. Transportation research hydrogen cars: fad or the future? Science 324, 1257–1259 (2009).

Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

Lu, Y. C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

Stamenkovic, V. R. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

Lima, F. H. B. et al. Catalytic activity d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111, 404–410 (2007).

Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

Meadowcroft, D. B. Low-cost oxygen electrode material. Nature 226, 847–848 (1970).

Suntivich, J., Gasteiger, H. A., Yabuuchi, N. & Shao-horn, Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 157, B1263–B1268 (2010).

Bockris, J. O. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

Zou, Z. G., Ye, J. H., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).

Matsumoto, Y., Yoneyama, H. & Tamura, H. Influence of nature of conduction-band of transition-metal oxides on catalytic activity for oxygen reduction. J. Electroanal. Chem. 83, 237–243 (1977).

Matsumoto, Y., Yoneyama, H. & Tamura, H., Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel-oxide and related oxides. J. Electroanal. Chem. 79, 319–326 (1977).

Matsumoto, Y., Yoneyama, H. & Tamura, H. A new catalyst for cathodic reduction of oxygen: lanthanum nickel oxide. Chem. Lett. 661–662 (1975).

Bockris, J. O. & Otagawa, T. Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87, 2960–2971 (1983).

Morin, F. J. & Wolfram, T. Surface states and catalysis on d-band perovskites. Phys. Rev. Lett. 30, 1214–1217 (1973).

Goodenough, J. B. & Zhou, J. S. in Localized to Itinerant Electronic Transition in Perovskite Oxides Vol. 98, 17–113 (Springer-Verlag Berlin, 2001).

Yan, J. Q., Zhou, J. S. & Goodenough, J. B. Ferromagnetism in LaCoO3 . Phys. Rev. B 70, 014402 (2004).

Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk (Pt(hkl)) studies. J. Phys. Chem. 100, 6715–6721 (1996).

Fernandez, E. M. et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47, 4683–4686 (2008).

Tejuca, L. G., Fierro, J. L. G. & Tascon, J. M. D. Structure and reactivity of perovskite-type oxides. Adv. Catal. 36, 237–328 (1989).

Dowden, D. A. Crystal and ligand field models of solid catalysts. Catal. Rev. 5, 1–32 (1971).

Yokoi, Y. & Uchida, H. Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: correlation between cluster model calculations and temperature-programmed desorption experiments. Catal. Today 42, 167–174 (1998).

Goodenough, J. B. & Cushing, B. L., in Handbook of Fuel Cells — Fundamentals, Technology and Applications Vol. 2, 520–533 (eds Vielstich, W., Gasteiger, H. A. & Yokokawa, H. (Wiley, 2003).

Abbate, M. et al. Probing depth of surface X-ray absorption spectroscopy measured in total electron-yield-mode. Surf. Interface Anal. 18, 65–69 (1992).

Abbate, M. et al. Controlled-valence properties of La1–xSrxFeO3 and La1–xSrxMnO3 studied by soft-X-ray absorption-spectroscopy. Phys. Rev. B 46, 4511–4519 (1992).

Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Norskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).