Design optimization of circular vessel using computational fluid dynamics for the effective heat storage

Usha Pawar1, Kiran Bhole2, Mansing Rathod3, Ankit D. Oza4, Dipali Bhole5, Manisha Makwana6
1Department of Mechanical Engineering, Datta Meghe College of Engineering, Navi Mumbai, India
2Department of Mechanical Engineering, Sardar Patel College of Engineering, Mumbai, India
3Department of Information Technology, KJ Somaiya Institute of Engineering and Information Technology, Mumbai, India
4Department of Computer Sciences and Engineering, Institute of Advanced Research, The University for Innovation, Gandhinagar, India
5Department of Computer Engineering, Shree L. R. Tiwari College of Engineering, Mumbai, India
6Department of Mechanical Engineering, A. D. Patel Institute of Technology, Anand, India

Tóm tắt

The latent heat energy storage using Phase Change Material (PCM) has an enormous appeal due to its profitable points associated with density and thermal characteristics. In this regard, a heat exchanger is modelled and analyzed to visualize the thermal behaviour and melting progression of PCM in a circular-shaped enclosed erect vessel via CFD tool. This work analyzes a multiphase transient study of a U-shaped copper tube placed in a closed cylindrical vessel through which heat transfer fluid flows for transferring heat to the PCM. This work shall be advantageous to the researchers to realize the thermal performance, time of PCM melting etc., to carry out research related to solar heat storage. The present study reports substantial decrease in the time taken to melt all the PCM filled in the container. Almost 32% of time is saved in the process of melting of PCM and thus improving the efficiency of the energy storage system.

Tài liệu tham khảo

Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003) Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45(9–10), 1597–1615 (2004) Abhat, A.: Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 30, 313–332 (1983) Zhang, Y., Zhou, G., Lin, K., Zhang, Q., Di, H.: Application of latent heat thermal energy storage in buildings: state- of-the-art and outlook. Build. Environ. 42(6), 2197–2209 (2007) Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009) Sharma, S.D., Kitano, H., Sagra, K.: phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ. 29, 31–64 (2004) Sharma, S.D., Sagra, K.: Latent heat storage materials and systems: a review. Int. J. Green Energy 2005, 21–56 (2005) Honguntiker, P.V., Pawar, U.C.: Characterization of erythritol as a phase change material. Int. J. Sci. Adv. Res. Technol. 5(1), 329–332 (2019) Reddy, R.M., Nallusamy, N., Prasad, B.A., Reddy, K.H.: Thermal energy storage system using phase change material-constants heat source. http://www.doiserbia.nb.rs/img/doi/0354-9836/2010%20Online-First/0354-98361000078R.pdf Abhay, B., Lingayat, S., Yogesh, R.: Review on phase change material as thermal energy storage medium: material, application. Int. J. Eng. Res. Appl. IJERA 3(4), 916–921 (2013) Kenisarin, M., Mahkamov, K.: Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 11, 1913–1965 (2007) Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009) Yang, Z., Garimella Suresh, V.: Melting of phase change material with volume change in metal foams, ASME digital collection. J. Heat Transf. 132(6), 062301 (2010) Francis, A., Philip, E., Mervyn, S.: Experimental study on the melting and solidification behavior of a medium temperature phase change storage material(Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renew. Energy 36, 108–117 (2011) Gabriela, L.: Thermal energy storage with phase change Material Leonardo. Electron. J. Pract. Technol. 20, 75–79 (2012) Ravikumar, M., Srinivasan, P.: Phase change material as thermal energy storage material for cooling of building. J. Theor. Appl. Inform. Technol. http://www.jatit.org/volumes/research-papers/Vol4No6/6Vol4No6.pdf4(6), 503–512 (2005–2008) Ravikumar, M., Pss, S.: Natural cooling of building using phase change material. Int. J. Eng. Technol. 5(1), 1–10 (2008) Patil, N.D.: Design and analysis of phase change material based thermal energy storage for active building cooling: a review. Int. J. Eng. Sci. Technol. (IJEST) 4(6), 2502–2509 (2012) Heins, A., Streicher, W.: Application of phase change materials and PCM-slurries for thermal energy storage. http://talon.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/8B-4.pdf Pawar, U.C., Chavan, S.G., Bhole, K.S., et al.: Optimization of roll forming process for different standard sections of steel structures. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01091-w Wang, Y., Wang, L., Xie, N., Lin, X., Chen, H.: Experimental study on the melting and Solidification behaviour of erythritol in a vertical shell-and-tube latent heat thermal storage unit. Int. J. Heat Mass Transf. 99, 770–781 (2016) Agyenim, F., Eames, P., Smyth, M.: Experimental study on the melting and solidification behaviour of a medium temperature phase changestorage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renew. Energy 36, 108–117 (2011) Rathod, M.K., Benerjee, J.R.: Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew. Sustain. Energy Rev. 18, 246–258 (2013) Estrázulas, J. J., Estudonumérico da mudança de fase de pcmsemcavidadescilíndricas, master thesis, 9 2015),universidade do vale do rio dos sinos (unisinos), sãoleopoldo, rs. (inportuguese) Shmueli, H., Ziskind, G., Letan, R.: Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int. J. Heat Mass Transf. 53, 4082–4091 (2010) Oliveski, R.D.C., Del Col, D.: Numerical simulation of thermal energy storage with pcm. In: Eurotherm Seminar #99: Advances in Thermal Energy Storage, Lleida, Spain (2014) Shatikian, V., Ziskind, G., Letan, R.: Numerical investigation of a pcm-based heat sink with internal fins. Int. J. Heat Mass Transf. 48, 3689–3706 (2005) Borahel, R.S., Raymundo Junior, J., Oliveski, R.D.C.: Análisebidimensional do processo de fusão de um material de mudança de faseemumacavidaderetangular, scientia plena 08 (in Portuguese) (2015) Longeon, M., Soupart, A., Fourmigué, J.F., Bruch, A., Marty, P.: Experimental and numerical study of annular pcm storage in the presence of natural convection. Appl. Energy 112, 175–184 (2013) Assis, E., Katsman, L., Ziskind, G., Letan, R.: Numerical and experimental study of melting in a spherical shell. Int. J. Heat Mass Transf. 50, 1790–1804 (2007) Al-Abidi, A.A., Mat, S., Sopian, K., Sulaiman, M.Y., Mohammad, A.T.: Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Appl. Therm. Eng. 53, 147–156 (2013) Raymundo, J.F., Borahel, R., Da, S., Oliveski, R., De, C.: Numerical study of the erythritol melting process in a tridimensional rectangular cavity. J. Therm. Eng. 14, 88–94 (2015) Pawar, U.C., Honguntiker, P.V.: CFD simulation of a steam regulating wickless heat pipe. In: Springer Lecture notes in Optimization Methods in engineering, pp. 53–72. https://doi.org/10.1007/978-981-15-4550-4_4 Bandar, F., Wrobel, L.C., Jouhara, H.: Numerical modeling of the temperature distribution in a two-phase closed thermosyphon. Appl. Therm. Eng. 60, 122–131 (2013)