Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
T.S. Dörr, L. Deilmann, G. Haselmann, A. Cherevan, P. Zhang, P. Blaha, P.W. de Oliveira, T. Kraus, D. Eder, Ordered mesoporous TiO2 gyroids: effects of pore architecture and nb-doping on photocatalytic hydrogen evolution under UV and visible irradiation. Adv. Energy Mater. 8, 1–11 (2018). https://doi.org/10.1002/aenm.201802566
J. Mahmood, M.A.R. Anjum, S.H. Shin, I. Ahmad, H.J. Noh, S.J. Kim, H.Y. Jeong, J.S. Lee, J.B. Baek, Encapsulating iridium nanoparticles inside a 3D cage-like organic network as an efficient and durable catalyst for the hydrogen evolution reaction. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805606
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen—evolution reaction through combining experiment. Angew. Chem. Int. Ed. 54, 52–65 (2015). https://doi.org/10.1002/anie.201407031
B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta. 47, 3571–3594 (2002). https://doi.org/10.1016/S0013-4686(02)00329-8
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)-Pt2 interfaces. Science. 334, 1256–1260 (2011)
J. Zhuo, T. Wang, G. Zhang, L. Liu, L. Gan, M. Li, Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: Surprising catalytic performance in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 52, 10867–10870 (2013). https://doi.org/10.1002/anie.201305328
T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). https://doi.org/10.1021/cr100246c
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). https://doi.org/10.1021/ja510442p
J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H.A. Gasteiger, New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014). https://doi.org/10.1039/c4ee00440j
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 1–15 (2018). https://doi.org/10.1007/s40820-018-0229-x
A. Kumar, J. Hong, Y. Yun, A. Bhardwaj, S.-J. Song, The role of surface lattice defects of CeO 2−δ nanoparticles as a scavenging redox catalyst in polymer electrolyte membrane fuel cells. J. Mater. Chem. A. 8, 26023–26034 (2020). https://doi.org/10.1039/D0TA09397A
S. Anantharaj, S. Kundu, S. Noda, Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A. 8, 4174–4192 (2020). https://doi.org/10.1039/c9ta14037a
M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. (2015). https://doi.org/10.1038/ncomms6982
C. Liu, C. Kong, F.J. Zhang, C.M. Kai, W.Q. Cai, X.Y. Sun, W.C. Oh, Research progress of defective MoS2 for photocatalytic hydrogen evolution. J. Korean Ceram. Soc. 58, 135–147 (2021). https://doi.org/10.1007/s43207-020-00103-3
A. Sumboja, T. An, H.Y. Goh, M. Lübke, D.P. Howard, Y. Xu, A.D. Handoko, Y. Zong, Z. Liu, One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium. ACS Appl. Mater. Interfaces. 10, 15673–15680 (2018). https://doi.org/10.1021/acsami.8b01491
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-13092-7
S. Hussain, D. Vikraman, A. Feroze, W. Song, K.S. An, H.S. Kim, S.H. Chun, J. Jung, Synthesis of Mo2C and W2C nanoparticle electrocatalysts for the efficient hydrogen evolution reaction in alkali and acid electrolytes. Front. Chem. 7, 1–11 (2019). https://doi.org/10.3389/fchem.2019.00716
Y. Li, X. Tan, S. Chen, X. Bo, H. Ren, S.C. Smith, C. Zhao, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution. Angew. Chem. Int. Ed. 58, 461–466 (2019). https://doi.org/10.1002/anie.201808629
Z. Shi, K. Nie, Z.J. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, X.M. Cao, P. Hu, Q. Gao, Y. Tang, Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ. Sci. 10, 1262–1271 (2017). https://doi.org/10.1039/c7ee00388a
H. Wu, X. Zuo, S.P. Wang, J.W. Yin, Y.N. Zhang, J. Chen, Theoretical and experimental design of Pt-Co(OH)2 electrocatalyst for efficient HER performance in alkaline solution. Prog. Nat. Sci. Mater. Int. 29, 356–361 (2019). https://doi.org/10.1016/j.pnsc.2019.05.009
L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi, J. Jin, Optimizing the volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal. 5, 3801–3806 (2015). https://doi.org/10.1021/cs501835c
C. Wang, G. Sui, D. Guo, J. Li, L. Zhang, S. Li, J. Xin, D.F. Chai, W. Guo, Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J. Colloid Interface Sci. 599, 577–585 (2021). https://doi.org/10.1016/j.jcis.2021.04.118
A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 282, 704–708 (2013). https://doi.org/10.1016/j.apsusc.2013.06.038
S.H. Lee, J.H. Park, S.M. Kim, Synthesis, property, and application of carbon nanotube fiber. J. Korean Ceram. Soc. 58, 148–159 (2021). https://doi.org/10.1007/s43207-020-00106-0
S.B. Kale, A.C. Lokhande, R.B. Pujari, C.D. Lokhande, Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications. J. Colloid Interface Sci. 532, 491–499 (2018). https://doi.org/10.1016/j.jcis.2018.08.012
R.B. Pujari, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Bath temperature controlled phase stability of hierarchical nanoflakes CoS2 thin films for supercapacitor application. RSC Adv. 6, 40593–40601 (2016). https://doi.org/10.1039/c6ra06442f
S.M. Oh, S.J. Hwang, Recent advances in two-dimensional inorganic nanosheet-based supercapacitor electrodes. J. Korean Ceram. Soc. 57, 119–134 (2020). https://doi.org/10.1007/s43207-020-00023-2
D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Controlled growth of CoSx nanostrip arrays (CoSx-NSA) on nickel foam for asymmetric supercapacitors. Energy Technol. 2, 401–408 (2014). https://doi.org/10.1002/ente.201300193
A.G. Meguerdichian, T. Jafari, M.R. Shakil, R. Miao, L.A. Achola, J. MacHaria, A. Shirazi-Amin, S.L. Suib, Synthesis and electrocatalytic activity of ammonium nickel phosphate, [NH4]NiPO4·6H2O, and β-nickel pyrophosphate, β-Ni2P2O7: catalysts for electrocatalytic decomposition of urea. Inorg. Chem. 57, 1815–1823 (2018). https://doi.org/10.1021/acs.inorgchem.7b02658
J.T. Ren, G.G. Yuan, L. Chen, C.C. Weng, Z.Y. Yuan, Rational dispersion of Co2P2O7 fine Particles on N, P-codoped reduced graphene oxide aerogels leading to enhanced reversible oxygen reduction ability for Zn-air batteries. ACS Sustain. Chem. Eng. 6, 9793–9803 (2018). https://doi.org/10.1021/acssuschemeng.8b00873
L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, B. Dong, Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29, 1–9 (2017). https://doi.org/10.1002/adma.201704574
B. Liu, H.Q. Peng, C.N. Ho, H. Xue, S. Wu, T.W. Ng, C.S. Lee, W. Zhang, Mesoporous nanosheet networked hybrids of cobalt oxide and cobalt phosphate for efficient electrochemical and photoelectrochemical oxygen evolution. Small 13, 1–12 (2017). https://doi.org/10.1002/smll.201701875
L. Mathur, A. Kumar, I.H. Kim, H. Bae, J.Y. Park, S.J. Song, Novel organic-inorganic polyphosphate based composite material as highly dense and robust electrolyte for low temperature fuel cells. J. Power Sources. (2021). https://doi.org/10.1016/j.jpowsour.2021.229696
S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014). https://doi.org/10.1021/ja4113885
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. (2019). https://doi.org/10.1007/s40820-019-0293-x
A. Kumar, J. Hong, Y. Yun, H. Jung, K.-S. Lee, J.W. Han, S.-J. Song, A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.06.193
L. Rout, P. Rengasamy, B. Ekka, A. Kumar, P. Dash, Supported bimetallic AgSn nanoparticle as an efficient photocatalyst for degradation of methylene blue dye. NANO 10, 1–13 (2015). https://doi.org/10.1142/S1793292015500599
K.T.V. Rao, S. Souzanchi, Z. Yuan, M.B. Ray, C. Xu, Simple and green route for preparation of tin phosphate catalysts by solid-state grinding for dehydration of glucose to 5-hydroxymethylfurfural (HMF). RSC Adv. 7, 48501–48511 (2017). https://doi.org/10.1039/c7ra10083c
F.H. Aragón, I. Gonzalez, J.A.H. Coaquira, P. Hidalgo, H.F. Brito, J.D. Ardisson, W.A.A. Macedo, P.C. Morais, Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method. J. Phys. Chem. C. 119, 8711–8717 (2015). https://doi.org/10.1021/acs.jpcc.5b00761
A. Bhardwaj, A. Kumar, U. Sim, H.N. Im, S.J. Song, Synergistic enhancement in the sensing performance of a mixed-potential NH3 sensor using SnO2@CuFe2O4 sensing electrode. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.127748
A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, Design of a graphene oxide-SnO2 nanocomposite with superior catalytic efficiency for the synthesis of β-enaminones and β-enaminoesters. RSC Adv. 5, 39193–39204 (2015). https://doi.org/10.1039/c5ra03363b
A. Kumar, L. Rout, L.S.K. Achary, A. Mohanty, R.S. Dhaka, P. Dash, An investigation into the solar light-driven enhanced photocatalytic properties of a graphene oxide-SnO2-TiO2 ternary nanocomposite. RSC Adv. 6, 32074–32088 (2016). https://doi.org/10.1039/c6ra02067d
G. Wu, A. Wang, X. Li, Y. Wang, Y. Hu, Facile fabrication of nickel phosphate nanotubes via a urea-assisted hydrothermal route. Mater. Chem. Phys. 132, 96–103 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.002
Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B.A. Lu, Z. Xie, L. Zheng, Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 8, 15131 (2017). https://doi.org/10.1038/ncomms15131
L.Y. Jiang, X.X. Lin, A.J. Wang, J. Yuan, J.J. Feng, X.S. Li, Facile solvothermal synthesis of monodisperse Pt2.6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions. Electrochim. Acta. 225, 525–532 (2017). https://doi.org/10.1016/j.electacta.2016.12.123
M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7, 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199
N. Tian, Z.-Y. Zhou, S.–G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science. 316, 732-735 (2007)
W. Hou, B. Zheng, F. Qi, B. Yu, Y. Chen, Self-assembled CNT/Ni0.85Se-SnO2 networks as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. 269, 155–162 (2018). https://doi.org/10.1016/j.electacta.2018.02.133
H. Zhang, C. Hu, S. Chen, K. Zhang, X. Wang, Synthesis of SnO 2 nanostructures and their application for hydrogen evolution reaction. Catal. Lett. 142, 809–815 (2012). https://doi.org/10.1007/s10562-012-0826-0
L. Li, Q. Shao, X. Huang, Amorphous oxide nanostructures for advanced electrocatalysis. Chem. Eur. J. (2019). https://doi.org/10.1002/chem.201903206
R. Beltrán-Suito, P.W. Menezes, M. Driess, Amorphous outperforms crystalline nanomaterials: Surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting. J. Mater. Chem. A. 7, 15749–15756 (2019). https://doi.org/10.1039/c9ta04583j
Q.T. Nguyen, P.D. Nguyen, D. Nguyen, Q.D. Truong, T.T. Kim Chi, T.T.D. Ung, I. Honma, N.Q. Liem, P.D. Tran, Novel amorphous molybdenum selenide as an efficient catalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 10, 8659–8665 (2018). https://doi.org/10.1021/acsami.7b18675
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 1–21 (2015). https://doi.org/10.1038/srep13801
J. Wang, Y. Xu, X. Chen, X. Du, Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. J. Power Sources. 163, 1120–1125 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.004
S. Radhakrishnan, H.Y. Kim, B.S. Kim, Expeditious and eco-friendly fabrication of highly uniform microflower superstructures and their applications in highly durable methanol oxidation and high-performance supercapacitors. J. Mater. Chem. A. 4, 12253–12262 (2016). https://doi.org/10.1039/c6ta04888a
H.B. Li, M.H. Yu, X.H. Lu, P. Liu, Y. Liang, J. Xiao, Y.X. Tong, G.W. Yang, Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces. 6, 745–749 (2014). https://doi.org/10.1021/am404769z
H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1–7 (2013). https://doi.org/10.1038/ncomms2932
Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue, H. Pang, Recent progress in some amorphous materials for supercapacitors. Small 14, 1–19 (2018). https://doi.org/10.1002/smll.201800426
X. Liu, J. Wang, G. Yang, Amorphous nickel oxide and crystalline manganese oxide nanocomposite electrode for transparent and flexible supercapacitor. Chem. Eng. J. 347, 101–110 (2018). https://doi.org/10.1016/j.cej.2018.04.070
A.U. Sardesai, V.N. Dhamu, A. Paul, S. Muthukumar, S. Prasad, Design and electrochemical characterization of spiral electrochemical notification coupled electrode (SENCE) platform for biosensing application. Micromachines. 11, 333 (2020). https://doi.org/10.3390/mi11030333
P. Charoen-amornkitt, T. Suzuki, S. Tsushima, Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits. Electrochim. Acta. 258, 433–441 (2017). https://doi.org/10.1016/j.electacta.2017.11.079