Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions.
Tài liệu tham khảo
Wong C-H, Whiteside GM. Enzymes in synthetic organic chemistry. Oxford: Pergamon Press; 1994.
Dey, 1991, Stabilization of d-amino acid oxidase from yeast Trigonopsis variabilis used for production of glutaryl-7-aminocephalosporanic acid from cephalosporin C, Appl. Biochem. Biotechnol., 27, 239, 10.1007/BF02921538
Schussel, 1996, A continuous alchol oxidase bioreactor for regenerative life support, Enzyme Microb. Technol., 18, 229, 10.1016/0141-0229(95)00101-8
Hwang, 1990, Gas phase acetaldehyde production in a continuous bioreactor, Biotechnol. Bioeng., 36, 834
Blandino, 2002, Modeling and simulation of a bienzymatic reaction system co-immobilized within hydrogel-membrane-liquid-core capsules, Enzyme Microb. Technol., 31, 556, 10.1016/S0141-0229(02)00154-0
Schoevaart, 2001, Combined catalytic reactions—nature’s way, Chem. Innov., 31, 33
Goszner, 1972, On the catalytic activity of silver. I. Activity, poisoning and regeneration during the decomposition of hydrogen peroxide, J. Catal., 25, 245, 10.1016/0021-9517(72)90224-2
Kanungo, 1979, Physicochemical properties of MnO2 and MnO2–CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation, J. Catal., 58, 419, 10.1016/0021-9517(79)90280-X
Koheler, 1975, Catalytic decomposition of hydrogen peroxide by manganese-alumina, Ind. Eng. Chem. Prod. Res. Dev., 14, 36, 10.1021/i360053a008
McKee, 1969, Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group, J. Catal., 14, 1037, 10.1016/0021-9517(69)90326-1
Razouk, 1972, Hydrated oxides of manganese supported on magnesium hydroxide as catalyst for hydrogen peroxide decomposition, J. Catal., 25, 183, 10.1016/0021-9517(72)90217-5
Roy, 1968, Catalytic decomposition of hydrogen peroxide on some oxide catalysts, J. Catal., 12, 129, 10.1016/0021-9517(68)90085-7
Brodelius, 1981, Production of keto acids. Part I. Immobilized cells of Trigonopsis variabilis containing d-amino acid oxidase, Appl. Biochem. Biotechnol., 6, 293, 10.1007/BF02798280
Fernandez-Lafuente, 1998, The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-ketoacids (phenylpyruvic acid), Enzyme Microb. Technol., 23, 28, 10.1016/S0141-0229(98)00028-3
Schoevaart, 1999, Carbohydrates from glycerol: an enzymatic four-step, one-pot synthesis, Chem. Comm., 24, 2465, 10.1039/a907874f
Costa, 2001, Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents, Enzyme Microb. Technol., 28, 815, 10.1016/S0141-0229(01)00335-0
Demirjian, 2001, Enzymes from extremophiles, Curr. Opin. Chem. Biol., 5, 144, 10.1016/S1367-5931(00)00183-6
Eichler, 2001, Biotechnological uses of archaeal extremozymes, Biotechnol. Adv., 19, 261, 10.1016/S0734-9750(01)00061-1
Kristjansson, 1989, Thermophilic organisms as sources of thermostable enzymes, Trends Biotechnol., 7, 349, 10.1016/0167-7799(89)90035-8
Bruins, 2001, Thermozymes and their applications, Appl. Biochem. Biotechnol., 90, 155, 10.1385/ABAB:90:2:155
Owusu, 1989, Correlation between microbial protein thermostability and resistance to denaturation in aqueous organic solvent two-phase systems, Enzyme Microb. Technol., 11, 568, 10.1016/0141-0229(89)90084-7
Gianfreda, 1991, Enzyme stabilization: state of the art, Mol. Cell. Biochem., 109, 97
Gupta, 1991, Thermostabilization of proteins, Biotechnol. Appl. Biochem., 14, 1
Klibanov, 1982, Stabilization of enzymes against thermal inactivation, Adv. Appl. Microb., 29, 1, 10.1016/S0065-2164(08)70352-6
Poltorak, 1999, Catalytic properties stability and the structure of the conformational lock in the alkaline phosphatase from Escherichia coli, J. Mol. Catal. B-Enzyme, 7, 165, 10.1016/S1381-1177(99)00039-9
Kurganov, 2000, Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b, Biochemistry, 39, 13144, 10.1021/bi000975w
Fernández-Lafuente, 1999, Stabilization of multimeric enzymes via immobilization and post-immobilization techniques, J. Mol. Catal. B: Enzymatic, 7, 181, 10.1016/S1381-1177(99)00028-4
Fernández-Lafuente, 2001, Biotransformations catalyzed by multimeric enzymes: stabilization of tetrameric ampicillin acylase permits the optimization of ampicillin synthesis under dissociation conditions, Biomacromolecules, 2, 95, 10.1021/bm000072i
Guisán, 1988, Aldehyde agarose gels as activated supports for immobilization-stabilization of enzymes, Enzyme Microb. Technol., 10, 375, 10.1016/0141-0229(88)90018-X
Fernández-Lafuente, 1993, Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method, Enzyme Microb. Technol., 15, 546, 10.1016/0141-0229(93)90016-U
Guisán JM, Penzol G, Armisén P, Bastida A, Blanco RM, Fernández-Lafuente R, et al. Immobilization of enzymes acting on macromolecular substrates. Methods in biotechnology. Totowa, NJ: Humana Press; 1997. p. 261–75.
Ramirez-Arcos, 1998, A thermophilic nitrate reductase is responsable for the strain specific anaerobic growth of Thermus thermophilus HB8, Biochim. Biophys. Acta, 1396, 215, 10.1016/S0167-4781(97)00183-8
Nelson, 1972, Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV), Anal. Biochem., 49, 474, 10.1016/0003-2697(72)90451-4
Bradford, 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Woodbury, 1971, An improved procedure using ferrycyanide for detecting catalase isozymes, Anal. Biochem., 44, 301, 10.1016/0003-2697(71)90375-7
Blanco, 1989, Immobilization–stabilization of enzymes. Variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment, Enzyme Microb. Technol., 11, 353, 10.1016/0141-0229(89)90019-7
Blanco, 1989, Stabilization of enzymes by multipoint covalent attachment to agarose aldehyde gels. Borohydride reduction of trypsin-agarose derivatives, Enzyme Microb. Technol., 11, 361, 10.1016/0141-0229(89)90020-3
Bastida, 1998, A single step purification, immobilization and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports, Biotechnol. Bioeng., 58, 486, 10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of the bateriophage T4, Nature, 227, 680, 10.1038/227680a0
Guisán JM, Rodrı́guez V, Rosell CM, Soler G, Bastida A, Fernández-Lafuente R, et al. Stabilization of immobilized enzymes by chemical modification with polyfunctional macromolecules. In: Bickerstaff GF, editor. Methods in biotechnology. 1. Immobilization of enzymes and cells. Totawa, NJ: Humana Press; 1997. p. 289–97.
Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA. Three-dimensional organization of catalases. In: Ovchinnicov, Yu A., editor. Progress in bioorganic chemistry and molecular biology. Amsterdam: Elsevier; 1984. p. 117–26.
Kagawa, 1999, Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium, Arch. Biochem. Biophys., 362, 346, 10.1006/abbi.1998.1041
Kono, 1983, Isolation and characterization of the pseudocatalase of Lactobacillus plantarum, J. Biol. Chem., 258, 6015, 10.1016/S0021-9258(18)32365-2
Allgood, 1986, Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album, J. Bacteriol., 168, 563, 10.1128/jb.168.2.563-567.1986
Amo, 2002, Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1, J. Bacteriol., 184, 3305, 10.1128/JB.184.12.3305-3312.2002