Design of a novel hybrid multimode interferometer operating with both TE and TM polarizations for sensing applications
Tóm tắt
A novel hybrid multimode interferometer for sensing applications operating with both TE and TM polarizations simultaneously is proposed and numerically demonstrated. The simulations were performed assuming an operating wavelength of 633 nm with the goal of future use as a biosensor, but its applications extend beyond that area and could be adapted for any wavelength or application of interest. By designing the mutimode waveguide core with a low aspect ratio, the confinement characteristics of TE modes and TM modes become very distinct and their interaction with the sample in the sensing area becomes very different as well, resulting in high device sensitivity. In addition, an excitation structure is presented, that allows good control over power distribution between the desired modes while also restricting the power coupled to other undesired modes. This new hybrid TE/TM approach produced a bulk sensitivity per sensor length of 1.798 rad
$$\cdot \textrm{RIU}^{-1} \cdot \upmu {\text m}^{-1}$$
and a bulk sensitivity per sensor area of 2.140 rad
$$\cdot \textrm{RIU}^{-1} \cdot \upmu {\text m}^{-2}$$
, which represents a much smaller footprint when compared to other MMI sensors, contributing to a higher level of integration, while also opening possibilities for a new range of MMI devices.
Tài liệu tham khảo
Arenas, Ángela Écija., Kirchner, E.-M., Hirsch, T., Fernández-Romero, J.M.: Development of an aptamer-based spr-biosensor for the determination of kanamycin residues in foods. Anal. Chim. Acta. 1169, 338631 (2021)
Bekmurzayeva, A., Ashikbayeva, Z., Myrkhiyeva, Z., Nugmanova, A., Shaimerdenova, M., Ayupova, T., Tosi, D.: Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of cd44 protein. Sci. Rep. 11, 19583 (2021)
Chou, H.-T., Liao, Y.-S., Wu, T.-M., Wang, S.-H., Su, W.-C.: Development of localized surface plasmon resonance-based optical fiber biosensor for immunoassay using gold nanoparticles and graphene oxide nanocomposite film. IEEE Sens. J. 22(7), 6593–6600 (2022)
Crosby, D., Lyons, N., Greenwood, E., Harrison, S., Moffat, J., et al.: A roadmap for the early detection and diagnosis of cancer. Lancet Oncol. 21(11), 1397–1399 (2020). https://doi.org/10.1016/S1470-2045(20)30593-3
Duval, D., González-Guerrero, A.B., Dante, S., Osmond, J., Monge, R., Fernández, L.J., Lechuga, L.M.: Nanophotonic lab-on-achip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip 12, 1987–1994 (2012). https://doi.org/10.1039/C2LC40054E
Dwivedi, R., Kumar, A.: Refractive index sensing using silicon-oninsulator waveguide based modal interferometer. Optik 156, 961–967 (2018)
Ebihara, K., Uchiyamada, K., Asakawa, K., Okubo, K., Suzuki, H.: Trimodal polymer waveguide interferometer for chemical sensing. Japanese J. Appl. Phys. 58(6), 062005 (2019). https://doi.org/10.7567/1347-4065/ab2221
Gallacher, K., Griffin, P.F., Riis, E., Sorel, M., Paul, D.J.: Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photonics 7, 046101 (2022)
Gandhi, S., Awasthi, S.K., Aly, A.H.: Biophotonic sensor design using a 1d defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 11, 26655–26665 (2021)
González-Guerrero, A.B., Maldonado, J., Dante, S., Grajales, D., Lechuga, L.M.: Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. J. Biophotonics 1, 61–67 (2017)
Grajales, D., Gavela, A.F., Domínguez, C., Sendra, J.R., Lechuga, L.M.: Low-cost vertical taper for highly efficient light in-coupling in bimodal nanointerferometric waveguide biosensors. J. Phys. Photonics 1, 025002 (2019). https://doi.org/10.1088/2515-7647/aafebb
Gupta, R., Goddard, N.J.: A study of diffraction-based chitosan leaky waveguide (LW) biosensors. Analyst 146, 4964–4971 (2021)
Gut, K., Karasiński, P., Wójcik, W., Rogoziński, R., Opilski, Z., Opilski, A.: Applicability of interference te0-tm0 modes and te0-te1 modes to the construction of waveguide sensors. Optica Applicata 29, 101–110 (1999)
Haider, F., Ahmmed Aoni, R., Ahmed, R., Jen Chew, W., Amouzad Mahdiraji, G.: Plasmonic micro-channel based highly sensitive biosensor in visible to mid-ir. Opt. Laser Technol. 140, 107020 (2021)
Hoppe, N., Föhn, T., Diersing, P., Scheck, P., Vogel, W., Rosa, M.F., Berroth, M.: Design of an integrated dual-mode interferometer on 250 nm silicon-on-insulator. IEEE J. Select. Top. Quantum Electron. 23(2), 444–451 (2017). https://doi.org/10.1109/JSTQE.2016.2618602
Isayama, Y.H., Hernández-Figueroa, H.E.: High-order multimode waveguide interferometer for optical biosensing applications. Sensors (2021). https://doi.org/10.3390/s21093254
Karabchevsky, A., Katiyi, A., Ang, A.S., Hazan, A.: On-chip nanophotonics and future challenges. Nanophotonics (2020). https://doi.org/10.1515/nanoph-2020-0204
Kaur, G., Gupta, M., Aggarwal, A., Sagar, V.: Diagnosis of covid-19 An evolution from hospital based to point of care testing. J. Commun. Med. Public Health (2021). https://doi.org/10.29011/2577-2228.100212
Kaur, B., Kumar, S., Kaushik, B.K.: 2d materials-based fiber optic spr biosensor for cancer detection at 1550 nm. IEEE Sens. J. 21(21), 23957–23964 (2021)
Kim, H.-M., Park, J.-H., Jeong, D.H., Lee, H.-Y., Lee, S.-K.: Real-time detection of prostate-specific antigens using a highly reliable fiber-optic localized surface plasmon resonance sensor combined with micro fluidic channel. Sens. Actuators B: Chem. 273, 891–898 (2018). https://doi.org/10.1016/j.snb.2018.07.007
Kribich, K.R., et al.: Novel chemical sensor/biosensor platform based on optical multimode interference (mmi) couplers. Sens. Actuators B: Chem. 107, 188–192 (2005)
Kurt, H., Pishva, P., Pehlivan, Z.S., Arsoy, E.G., Saleem, Q., Bayazıt, M.K., Yüce, M.: Nanoplasmonic biosensors: theory, structure, design, and review of recent applications. Analytica Chimica Acta 1185, 338842 (2021)
Liang, Y., Zhao, M., Wu, Z., Morthier, G.: Investigation of grating-assisted trimodal interferometer biosensors based on a polymer platform. Sensors 18(5), 1502 (2018). https://doi.org/10.3390/s18051502
Lotfiani, A., Dehdashti Jahromi, H., Hamedi, S.: Monolithic silicon-based photovoltaic-nanoplasmonic biosensor with enhanced limit of detection and minimum detectable power. J. Lightw. Technol. 40(4), 1231–1237 (2022)
Ly, T.T., Ruan, Y., Du, B., Jia, P., Zhang, H.: Fibre-optic surface plasmon resonance biosensor for monoclonal antibody titer quantification. Biosensors 11(10), 383 (2021)
Ramirez, J.C., Gabrielli, L.H., Lechuga, L.M., Hernández-Figueroa, H.E.: Trimodal waveguide demonstration and its implementation as a high order mode interferometer for sensing application. Sens. (Basel) 19(12), 2821 (2019)https://doi.org/10.3390/s19122821
Ramirez, J.C., Lechuga, L.M., Gabrielli, L.H., Hernandez-Figueroa, H.E.: Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors. Opt. Express 23(9), 11985–11994 (2015)
Rezaei, M., Razavi Bazaz, S., Zhand, S., Sayyadi, N., Jin, D., Stewart, M.P., Ebrahimi Warkiani, M.: Point of care diagnostics in the age of covid-19. Diagnostics 11(1), 9 (2021)
Sacher, W.D., Luo, X., Yang, Y., Chen, F.-D., Lordello, T., Mak, J.C.C., Poon, J.K.S.: Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express 27, 37400–37418 (2019)
Shamy, R.S.E., Khalil, D., Swillam, M.A.: Mid infrared optical gas sensor using plasmonic mach-zehnder interferometer. Sci. Rep. 10, 1293 (2020). https://doi.org/10.1038/s41598-020-57538-1
Soni, V., Chang, C.-W., Xu, X., Wang, C., Yan, H., D’Agati, M., Chen, R.T.: Portable automatic microring resonator system using a subwavelength grating metamaterial waveguide for high-sensitivity realtime optical-biosensing applications. IEEE Trans. Biomed. Eng. 68(6), 1894–1902 (2021). https://doi.org/10.1109/TBME.2020.3029148
Srivastava, A., Sharma, A.K., Kumar Prajapati, Y.: On the sensitivityenhancement in plasmonic biosensor with photonic spin hall effect at visible wavelength. Chem. Phys. Lett. 774, 138613 (2021)
Torrijos-Morán, L., Griol, A., García-Rupérez, J.: Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Sci. Appl. Light 10, 16 (2021)
Zhang, L., Li, X., Wang, Y., Sun, K., Chen, X., Chen, H., Zhou, J.: Reproducible plasmonic nanopyramid array of various metals for highly sensitive refractometric and surface-enhanced raman biosensing. ACS Omega 3(10), 14181–14187 (2018). https://doi.org/10.1021/acsomega.7b02016
Zhu, Y., Wang, J., Xie, W., Tian, B., Li, Y., Brainis, E., Thourhout, D.V.: Ultra-compact silicon nitride grating coupler for microscopy systems. Opt. Express 25, 33297–33304 (2017)
Zinoviev, K.E., González-Guerrero, A.B., Domínguez, C., Lechuga, L.M.: Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightw. Technol. 29(13), 1926–1930 (2011)