Design of a cold-rolled novel advanced high-strength steel: An analysis of microstructural evolution and mechanical properties
Tài liệu tham khảo
Sun, 2018, Advanced high strength steel (AHSS) development through chemical patterning of austenite, Scr. Mater., 146, 60, 10.1016/j.scriptamat.2017.11.007
Sohn, 2015, Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Mater., 96, 301, 10.1016/j.actamat.2015.06.024
Askari-Paykani, 2018, Second-phase hardening and rule of mixture, microbands and dislocation hardening in Fe67.4−xCr15.5Ni14.1Si3.0Bx (x = 0, 2) alloy systems, Mater. Sci. Eng. A, 715, 214, 10.1016/j.msea.2018.01.002
Adler, 1986, Strain hardening of Hadfield manganese steel, Metall. Mater. Trans. A, 17, 1725, 10.1007/BF02817271
Rémy, 1981, The interaction between slip and twinning systems and the influence of twinning on the mechanical behavior of fcc metals and alloys, Metall. Trans. A., 12, 387, 10.1007/BF02648536
Rémy, 1977, Twin-slip interaction in f.c.c. crystals, Acta Metall., 25, 711, 10.1016/0001-6160(77)90013-X
Dijk, 2005, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53, 5439, 10.1016/j.actamat.2005.08.017
Galindo-Nava, 2017, Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects, Acta Mater., 128, 120, 10.1016/j.actamat.2017.02.004
Tian, 2009, Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part I. X-ray diffraction line profile analysis, Mater. Sci. Eng. A, 516, 73, 10.1016/j.msea.2009.02.031
Jeong, 2013, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel, Acta Mater., 61, 3399, 10.1016/j.actamat.2013.02.031
Gárlipp, 2001, Austenite decomposition of C–Mn steel containing boron by continuous cooling, J. Mater. Process. Technol., 114, 71, 10.1016/S0924-0136(01)00571-4
Klimenkov, 2015, Boron effect on the microstructure of 9% Cr ferritic–martensitic steels, J. Nucl. Mater., 462, 280, 10.1016/j.jnucmat.2015.03.002
Mun, 2012, Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel, Mater. Sci. Eng. A, 545, 214, 10.1016/j.msea.2012.03.047
Fedorova, 2018, Fine (Cr, Fe)2B borides on grain boundaries in a 10Cr–0.01B martensitic steel, Scr. Mater., 156, 124, 10.1016/j.scriptamat.2018.07.021
Williams, 1976, The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel, Metal Sci., 10, 14, 10.1179/030634576790431471
Jahazi, 2002, The non-equilibrium segregation of boron on original and moving austenite grain boundaries, Mater. Sci. Eng. A, 335, 49, 10.1016/S0921-5093(01)01905-0
Askari-Paykani, 2017, Analysis of tensile deformation behavior of AM2B® advanced high-strength steel using electron back-scattered diffraction technique, Mater. Charact., 130, 64, 10.1016/j.matchar.2017.05.033
Karlsson, 1998, Overview no. 63 non-equilibrium grain boundary segregation of boron in austenitic stainless steel—IV. Precipitation behaviour and distribution of elements at grain boundaries, Acta Metall., 36, 35, 10.1016/0001-6160(88)90026-0
Guo, 2003, Boron solubility in Fe–Cr–B cast irons, Mater. Sci. Eng. A, 352, 40, 10.1016/S0921-5093(02)00449-5
Jorge-Badiola, 2005, Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel, Mater. Sci. Eng. A, 394, 445, 10.1016/j.msea.2004.11.049
Tiamiyu, 2018, Effects of grain refinement on the quasi-static compressive behavior of AISI 321 austenitic stainless steel: EBSD, TEM, and XRD studies, Int. J. Plast., 107, 79, 10.1016/j.ijplas.2018.03.014
Jin, 2014, Annealing twin development during recrystallization and grain growth in pure nickel, Mater. Sci. Eng. A, 597, 295, 10.1016/j.msea.2014.01.018
Mandal, 2009, Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A, 515, 134, 10.1016/j.msea.2009.02.042
Pande, 2004, Effect of annealing twins on Hall–Petch relation in polycrystalline materials, Mater. Sci. Eng. A, 367, 171, 10.1016/j.msea.2003.09.100
Gleiter, 1969, The formation of annealing twins, Acta Metall., 17, 1421, 10.1016/0001-6160(69)90004-2
Johnson, 1988, Precipitation shape transitions during coarsening under uniaxial stress, Acta Metall., 3149, 10.1016/0001-6160(88)90051-X
Wang, 2011, Strain-induced precipitation in a Ti micro-alloyed HSLA steel, Mater. Sci. Eng. A, 559, 459, 10.1016/j.msea.2011.09.062
De, 2004, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scr. Mater., 50, 1445, 10.1016/j.scriptamat.2004.03.011
Benzing, 2018, Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel, Mater. Sci. Eng. A, 711, 78, 10.1016/j.msea.2017.11.017
Umemoto, 2000, Tensile stress-strain analysis of single-structure steels, Metall. Mater. Trans. A, 31, 1785, 10.1007/s11661-006-0249-x
Monteiro, 2017, An empirical analysis of titanium stress-strain curves, Metall. Trans. A., 4, 1011, 10.1007/BF02645603
Matlock, 1982, Deformation, processing and structure, 47
Jiang, 2014, Strain hardening behaviour and its relationship to tensile mechanical properties of dual phase steel, Metal. Sci. J., 8, 1075
Tomita, 1985, Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metall. Trans. A, 16, 73, 10.1007/BF02656714
Mejía, 2006, Determination of the work hardening exponent by the Hollomon and differential Crussard-Jaoul analyses of cold drawn ferrite-pearlite steels, Mater. Sci. Forum, 509, 37, 10.4028/www.scientific.net/MSF.509.37
Luo, 2017, Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures, Mater. Sci. Eng. A, 682, 698, 10.1016/j.msea.2016.11.017
Zhao, 2011, ODS ferritic steel engineered with bimodal grain size for high strength and ductility, Mater. Lett., 65, 1672, 10.1016/j.matlet.2011.02.064
Li, 2018, Hierarchical microstructure design of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties, Acta Mater., 158, 79, 10.1016/j.actamat.2018.06.019
Idrissi, 2010, On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., 58, 2464, 10.1016/j.actamat.2009.12.032
Korbel, 1976, A new approach to the Portevin-LeCatelier effect, Acta Metall., 24, 919, 10.1016/0001-6160(76)90040-7