Design of a cold-rolled novel advanced high-strength steel: An analysis of microstructural evolution and mechanical properties

Materials Characterization - Tập 163 - Trang 110265 - 2020
Z.H. Li1, J.K. Ren1, C. Wang1, X. Wang1, R.D.K. Misra2, G.D. Wang1
1State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA

Tài liệu tham khảo

Sun, 2018, Advanced high strength steel (AHSS) development through chemical patterning of austenite, Scr. Mater., 146, 60, 10.1016/j.scriptamat.2017.11.007 Sohn, 2015, Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Mater., 96, 301, 10.1016/j.actamat.2015.06.024 Askari-Paykani, 2018, Second-phase hardening and rule of mixture, microbands and dislocation hardening in Fe67.4−xCr15.5Ni14.1Si3.0Bx (x = 0, 2) alloy systems, Mater. Sci. Eng. A, 715, 214, 10.1016/j.msea.2018.01.002 Adler, 1986, Strain hardening of Hadfield manganese steel, Metall. Mater. Trans. A, 17, 1725, 10.1007/BF02817271 Rémy, 1981, The interaction between slip and twinning systems and the influence of twinning on the mechanical behavior of fcc metals and alloys, Metall. Trans. A., 12, 387, 10.1007/BF02648536 Rémy, 1977, Twin-slip interaction in f.c.c. crystals, Acta Metall., 25, 711, 10.1016/0001-6160(77)90013-X Dijk, 2005, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53, 5439, 10.1016/j.actamat.2005.08.017 Galindo-Nava, 2017, Understanding martensite and twin formation in austenitic steels: a model describing TRIP and TWIP effects, Acta Mater., 128, 120, 10.1016/j.actamat.2017.02.004 Tian, 2009, Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: part I. X-ray diffraction line profile analysis, Mater. Sci. Eng. A, 516, 73, 10.1016/j.msea.2009.02.031 Jeong, 2013, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel, Acta Mater., 61, 3399, 10.1016/j.actamat.2013.02.031 Gárlipp, 2001, Austenite decomposition of C–Mn steel containing boron by continuous cooling, J. Mater. Process. Technol., 114, 71, 10.1016/S0924-0136(01)00571-4 Klimenkov, 2015, Boron effect on the microstructure of 9% Cr ferritic–martensitic steels, J. Nucl. Mater., 462, 280, 10.1016/j.jnucmat.2015.03.002 Mun, 2012, Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel, Mater. Sci. Eng. A, 545, 214, 10.1016/j.msea.2012.03.047 Fedorova, 2018, Fine (Cr, Fe)2B borides on grain boundaries in a 10Cr–0.01B martensitic steel, Scr. Mater., 156, 124, 10.1016/j.scriptamat.2018.07.021 Williams, 1976, The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel, Metal Sci., 10, 14, 10.1179/030634576790431471 Jahazi, 2002, The non-equilibrium segregation of boron on original and moving austenite grain boundaries, Mater. Sci. Eng. A, 335, 49, 10.1016/S0921-5093(01)01905-0 Askari-Paykani, 2017, Analysis of tensile deformation behavior of AM2B® advanced high-strength steel using electron back-scattered diffraction technique, Mater. Charact., 130, 64, 10.1016/j.matchar.2017.05.033 Karlsson, 1998, Overview no. 63 non-equilibrium grain boundary segregation of boron in austenitic stainless steel—IV. Precipitation behaviour and distribution of elements at grain boundaries, Acta Metall., 36, 35, 10.1016/0001-6160(88)90026-0 Guo, 2003, Boron solubility in Fe–Cr–B cast irons, Mater. Sci. Eng. A, 352, 40, 10.1016/S0921-5093(02)00449-5 Jorge-Badiola, 2005, Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel, Mater. Sci. Eng. A, 394, 445, 10.1016/j.msea.2004.11.049 Tiamiyu, 2018, Effects of grain refinement on the quasi-static compressive behavior of AISI 321 austenitic stainless steel: EBSD, TEM, and XRD studies, Int. J. Plast., 107, 79, 10.1016/j.ijplas.2018.03.014 Jin, 2014, Annealing twin development during recrystallization and grain growth in pure nickel, Mater. Sci. Eng. A, 597, 295, 10.1016/j.msea.2014.01.018 Mandal, 2009, Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A, 515, 134, 10.1016/j.msea.2009.02.042 Pande, 2004, Effect of annealing twins on Hall–Petch relation in polycrystalline materials, Mater. Sci. Eng. A, 367, 171, 10.1016/j.msea.2003.09.100 Gleiter, 1969, The formation of annealing twins, Acta Metall., 17, 1421, 10.1016/0001-6160(69)90004-2 Johnson, 1988, Precipitation shape transitions during coarsening under uniaxial stress, Acta Metall., 3149, 10.1016/0001-6160(88)90051-X Wang, 2011, Strain-induced precipitation in a Ti micro-alloyed HSLA steel, Mater. Sci. Eng. A, 559, 459, 10.1016/j.msea.2011.09.062 De, 2004, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scr. Mater., 50, 1445, 10.1016/j.scriptamat.2004.03.011 Benzing, 2018, Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel, Mater. Sci. Eng. A, 711, 78, 10.1016/j.msea.2017.11.017 Umemoto, 2000, Tensile stress-strain analysis of single-structure steels, Metall. Mater. Trans. A, 31, 1785, 10.1007/s11661-006-0249-x Monteiro, 2017, An empirical analysis of titanium stress-strain curves, Metall. Trans. A., 4, 1011, 10.1007/BF02645603 Matlock, 1982, Deformation, processing and structure, 47 Jiang, 2014, Strain hardening behaviour and its relationship to tensile mechanical properties of dual phase steel, Metal. Sci. J., 8, 1075 Tomita, 1985, Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metall. Trans. A, 16, 73, 10.1007/BF02656714 Mejía, 2006, Determination of the work hardening exponent by the Hollomon and differential Crussard-Jaoul analyses of cold drawn ferrite-pearlite steels, Mater. Sci. Forum, 509, 37, 10.4028/www.scientific.net/MSF.509.37 Luo, 2017, Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures, Mater. Sci. Eng. A, 682, 698, 10.1016/j.msea.2016.11.017 Zhao, 2011, ODS ferritic steel engineered with bimodal grain size for high strength and ductility, Mater. Lett., 65, 1672, 10.1016/j.matlet.2011.02.064 Li, 2018, Hierarchical microstructure design of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties, Acta Mater., 158, 79, 10.1016/j.actamat.2018.06.019 Idrissi, 2010, On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., 58, 2464, 10.1016/j.actamat.2009.12.032 Korbel, 1976, A new approach to the Portevin-LeCatelier effect, Acta Metall., 24, 919, 10.1016/0001-6160(76)90040-7