Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thiết kế mạch cổng XOR/NOT và bộ so sánh pha công suất bằng cấu trúc không khí vàng trong công nghệ dây dẫn silicon
Tóm tắt
Sự khác biệt lớn giữa chỉ số khúc xạ của Si và SiO2 trong cấu trúc SOI (silicon trên chất cách điện) và, do đó, khả năng cao của nó trong việc chặn laser, đã dẫn đến việc chế tạo các thiết bị quang học có giá trị trong những năm gần đây. Trong bài báo này, với một ý tưởng mới, bằng cách thêm hai bức tường vàng chuyển động qua lại và một khoảng không khí ngang, cấu trúc SOI được phát triển theo cách mà thiết bị được chế tạo bằng phương pháp mới, chẳng hạn như mạch cổng XOR và NOT cũng như bộ so sánh pha công suất, có tốc độ mơ ước và kích thước siêu nhỏ. Cấu trúc này chỉ tương thích với phân cực tuyến tính sao cho trục phân cực, là hướng của điện trường, song song với các tấm vàng. Trong cấu trúc đa chức năng được trình bày trong bài báo này, nếu các đầu vào là sóng phẳng đồng nhất, đầu ra sẽ là sóng phẳng đồng nhất với độ chính xác cao và các đầu vào có thể là pha hoặc công suất trong khi đầu ra chỉ là công suất. Mô phỏng trong bài báo này được thực hiện bằng phương pháp miền thời gian sai phân hữu hạn.
Từ khóa
#SOI #chỉ số khúc xạ #cấu trúc không khí vàng #cổng XOR #cổng NOT #bộ so sánh pha công suất #phân cực tuyến tính #mô phỏng miền thời gian sai phân hữu hạn.Tài liệu tham khảo
Berenger, J.-P.: Perfectly Matched Layer (PML) for Computational Electromagnetics, vol. 2 (1), pp. 1–117. Morgan & Claypool, California (2007)
Berrettini, G., et al.: Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photon. Technol. Lett. 18(8), 917–919 (2006)
Chaykandi, Z.F., et al.: MMI-based all-optical multi-input XOR and XNOR logic gate using nonlinear directional coupler. Opt. Quant. Electron. 47(11), 3477–3489 (2015)
Chaykandi, Z.F., et al.: Ultra-compact all-optical phase-controlled NAND, OR, XOR, XNOR, and NOT multi-function logic gate. Opt. Quant. Electron. 50(7), 155 (2018)
Dong, J., et al.: 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt. Commun. 281, 1710–1715 (2008)
Dong, J., et al.: A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picoseconds pulse injection. Opt. Express 17(10), 7725–7730 (2009)
Esakki Muthu, K., et al.: Design and analysis of 3-input NAND/NOR/XNOR gate based on 2D photonic crystals. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2018-0210
Fakouri-Farid, V., et al.: Design and Simulation of an all optical photonic crystal-based comparator. Optik 172, 241–248 (2018)
Gedney, S.D.: An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans. Antennas Propag. 44(12), 1630–1639 (1996)
Goudarzi, K., et al.: All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal. Opt. Laser Technol. 78, 139–142 (2016)
Han, L.Y., et al.: All-optical NOR gate based on injection-locking effect in a semiconductor laser. Optoelectron. Lett. 4(1), 34–37 (2008)
Han, B.C., et al.: Experimental study on all-optical half-adder based on semiconductor optical amplifier. Optoelectron. Lett. 5(3), 162–164 (2009)
Heydari, A., et al.: All-optical XOR, XNOR, NAND and OR logic gates based on photonic crystal 3-DB coupler for BPSK signals. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2018-0228
Houbavlis, T., et al.: 10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate. Electron. Lett. 35, 1650–1652 (1999)
Ishizaka, Y.: Design of Optical XOR, XNOR, NAND, and OR logic gates based on multi-mode interference waveguides for binary-phase-shift-keyed signal. J. Lightwave Technol. 29(18), 2836–2846 (2011)
Kawazoe, T., et al.: Demonstration of nano photonic NOT gate using near-field optically coupled quantum dots. Appl. Phys. B 84, 243–246 (2006)
Khorasaninejad, M., et al.: All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides. Appl. Opt. 48(25), 31–36 (2009)
Kim, S.H., et al.: All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron. Lett. 41, 1027–1028 (2005)
Komatsu, K., et al.: Ultrafast all-optical digital comparator using quantum-dot semiconductor optical amplifiers. Opt. Quant. Electron. 51(2), 39 (2019)
Kotb, A., et al.: All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach–Zehnder interformer modules. Opt. Laser Technol. 108, 426–433 (2018)
Kotb, A., et al.: 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach–Zehnder interferometer and delayed interferometer. Springer Nat. 38(1), 177–184 (2019)
Kumar, S.: All-optical bit magnitude comparator device using metal–insulator–metal plasmonic waveguide. SPIE 56(12), 121908 (2017)
Kumar, S., et al.: Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA. Opt. Express 14, 5092–5097 (2006)
Kumar, A., et al.: Implementation of XOR/XNOR and AND logic gates by using Mach–Zehnder interferometers. Optik 125, 5764–5767 (2014)
Kumar, S., et al.: Design of 1-bit and 2-bit magnitude comparator using electro-optic effect in Mach–Zehnder interferometers. Opt. Commun. 357, 127–147 (2015)
Kumar, S., et al.: Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Springer Nat. 12(2), 369–375 (2016)
Lai, D.M.F., et al.: All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt. Express 16(22), 18362–18370 (2008)
Li, H.H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9(3), 561–658 (1993)
Li, Z., et al.: All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electron. Lett. 41, 1397–1399 (2005a)
Li, Z., et al.: Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt. Express 13(3), 1033–1038 (2005b)
Li, Z., et al.: Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 18, 1341–1343 (2006)
Li, P., et al.: All-optical comparator with a step-like transfer function. J. Lightwave Technol. 35(23), 5034–5040 (2017)
Li, X.B., et al.: Edge mode graphene plasmons based all-optical logic gates. J. Photon. 33, 66–69 (2018)
Li, P., et al.: All-optical logic gates based on unidirectional surface Plasmon polaritons. Appl. Opt. 58(16), 4205 (2019)
Lize, Y.K., et al.: Combination of optical and electronic logic gates for error correction in multipath differential demodulation. Opt. Express 15(11), 6831–6839 (2007)
Ma, S., et al.: High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Express 18(7), 6417–6422 (2010)
Mandal, D., et al.: Design of All-Optical One Bit Binary Comparator Using Reversible Logic Gates. IEEE, Washington (2017)
Miyoshi, Y., et al.: Ultrafast all optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt. Express 16(4), 2570–2577 (2008)
Mohammadnejad, S., et al.: MMI-based simultaneous all-optical XOR-NAND-OR and XNOR-NOT multilogic gate for phase-based signals. IEEE J. Quantum Electron. 50, 121–125 (2014)
Newhouse, M.A., et al.: Pr-doped mixed-halide glasses for 1300 nm amplification. IEEE Photon. Technol. Lett. 6(2), 189–191 (1994)
Phongsanam, P., et al.: All-optical logic AND and OR gates generated by dark-bright soliton conversion. Optik 124, 406–410 (2013)
Rathi, S., et al.: Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun. 40(4), 363–367 (2019)
Roy, J.N., et al.: Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device-alternative approach. Appl. Opt. 46(22), 5304–5310 (2007)
Serajmohammadi, S., et al.: A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs. Photon. Nanostruct. Fundam. Appl. 34(2019), 19–23 (2019)
Swarnakar, S., et al.: Design of all optical XOR gate based on photonic crystal ring resonator. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0142
Tai, T., et al.: Micro photonics devices based on silicon microfabrication technology. IEEE J. Sel. Topics Quantum Electron. 11(1), 232–240 (2005)
Tan, C.Z.: Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. J. Non-Cryst. Solids 223(1–2), 158–163 (1998)
Upadhyay, K.K., et al.: A novel model of all-optical reversible XOR/XNOR logic gate on a single photonic circuit. Indian J. Phys. 93, 1081–1094 (2019)
Wang, J., et al.: All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing. Opt. Express 17(15), 12555–12563 (2009)
Wu, Y.D.: All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity. IEEE J. Select. Quant. Electron. 11(2), 307–312 (2005)
Wu, Y.D., et al.: New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer. Opt. Express 16(1), 248–257 (2008)
Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)
Youssef, S., et al.: Simultaneous Realization of Wavelength Conversion, 2R Regeneration, and All-Optical Multiple Logic Gates with OR, NOR, XOR, and XNOR Functions Based on Self-Polarization Rotation in a Single SOA: An Experimental Approach. Hindawi Pub, London (2012)
Zafar, R., et al.: Fano resonance excited all-optical XOR, XNOR, and NOT gates with high contrast ratio. Plasmonics 13(6), 1987–1994 (2018)
Zaghloul, Y.A., et al.: Complete all-optical processing polarization based binary logic gates and optical processors. Opt. Express 14(21), 9879–9895 (2006)
Zhang, X., et al.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12, 361–366 (2004)
Zhang, Y., et al.: Optical switches and logic gates based on self collimated beams in two-dimensional photonic crystals. Opt. Express 15(15), 9287–9292 (2007)
Zhang, L., et al.: Demonstration of directed XOR/XNOR logic gates using two cascaded micro ring resonators. Opt. Lett. 35(10), 1620–1622 (2010)