Design of QCA based N-bit single layer shift register using efficient JK Flip Flop for nano-communication applications

Nano Communication Networks - Tập 36 - Trang 100443 - 2023
Sadaf Bashir1,2, Salma Yaqoob1, Suhaib Ahmed1,3
1Department of Electronics and Communication Engineering, Baba Ghulam Shah Badshah University, Rajouri, India
2Department of Electronics and Information Technology, University of Kashmir, Srinagar, India
3Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India

Tài liệu tham khảo

Lent, 1993, Quantum cellular automata, Nanotechnology, 4, 49, 10.1088/0957-4484/4/1/004 Vahabi, 2022, Ultra-low-cost design of ripple carry adder to design nanoelectronics in QCA nanotechnology, Electronics, 11, 2320, 10.3390/electronics11152320 Das, 2023, Nano-scale design of full adder and full subtractor using reversible logic based decoder circuit in quantum-dot cellular automata, Int. J. Numer. Modelling, Electron. Netw. Devices Fields, 10.1002/jnm.3092 Seyedi, 2018, Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata, Nano Commun. Netw., 16, 1, 10.1016/j.nancom.2018.02.002 Sankalp, 2021, A new design of d flip-flop using quantum-dot cellular automata, 1 Moharrami, 2018, Designing nanoscale counter using reversible gate based on quantum-dot cellular automata, Internat. J. Theoret. Phys., 57, 1060, 10.1007/s10773-017-3638-6 Jeon, 2019, Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations, J. Supercomput., 1 Divshali, 2019, Design of novel coplanar counter circuit in quantum dot cellular automata technology, Internat. J. Theoret. Phys., 58, 2677, 10.1007/s10773-019-04158-9 Abutaleb, 2017, Robust and efficient quantum-dot cellular automata synchronous counters, Microelectron. J., 61, 6, 10.1016/j.mejo.2016.12.013 Nafees, 2020, Modeling and logic synthesis of multifunctional and universal 3 ×3 reversible gate for nanoscale applications, 1423 Manzoor, 2020, Logic design and modeling of an ultraefficient 3 ×3 reversible gate for nanoscale applications, 1433 Ahmed, 2020, Design of reversible universal and multifunctional gate-based 1-bit full adder and full subtractor in quantum-dot cellular automata nanocomputing, J. Nanophotonics, 14, 10.1117/1.JNP.14.036002 Bhat, 2019, Design of ultra-efficient reversible gate based 1-bit full adder in QCA with power dissipation analysis, Internat. J. Theoret. Phys., 58, 4042, 10.1007/s10773-019-04271-9 Ma, 2008, Reversible and testable circuits for molecular QCA design, 157 Bilal, 2017, Multifunction reversbile logic gate: Logic synthesis and design implementation in QCA, 1385 Sandhu, 2019, A majority gate based ram cell design with least feature size in QCA, Gazi Univ. J. Sci., 32, 1150, 10.35378/gujs.500724 Sadhu, 2020, Area-delay-energy aware SRAM memory cell and M×N parallel read/write memory array design for quantum dot cellular automata, Microprocess. Microsyst., 72, 10.1016/j.micpro.2019.102944 Mubarakali, 2019, A new efficient design for random access memory based on quantum dot cellular automata nanotechnology, Nano Commun. Netw., 21, 10.1016/j.nancom.2019.100252 Heikalabad, 2016, Content addressable memory cell in quantum-dot cellular automata, Microelectron. Eng., 163, 140, 10.1016/j.mee.2016.06.009 Fam, 2019, Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata, Photonic Netw. Commun., 37, 120, 10.1007/s11107-018-0801-9 Safoev, 2021, Design of fault tolerant bifunctional parity generator and scalable code converters based on QCA technology, Int. J. Inf. Technol., 1 Ahmed, 2020, Design of quantum-dot cellular automata technology based cost-efficient polar encoder for nanocommunication systems, Int. J. Commun. Syst., 33, 10.1002/dac.4630 Zhang, 2015, Design and simulation of turbo encoder in quantum-dot cellular automata, IEEE Trans. Nanotechnol., 14, 820, 10.1109/TNANO.2015.2449663 Sherizadeh, 2018, Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving, Optik, 158, 477, 10.1016/j.ijleo.2017.12.055 Seyedi, 2018, An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata, Internat. J. Theoret. Phys., 57, 2022, 10.1007/s10773-018-3728-0 Zhang, 2019, A programmable hamming encoder/decoder system design with quantum-dot cellular automata, 1338 Ahmed, 2020, Design of quantum dot cellular automata based fault tolerant convolution encoders for secure nanocomputing, Int. J. Quantum Inf., 18, 10.1142/S021974992050032X Naz, 2022, QCA based cost efficient coplanar 1 ×4 RAM design with set/reset ability, Int. J. Numer. Modelling, Electron. Netw. Devices Fields, 35 Yaqoob, 2021, Design of efficient N-bit shift register using optimized D flip flop in quantum dot cellular automata technology, IET Quantum Commun., 2, 32, 10.1049/qtc2.12008 Walus, 2004, QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol., 3, 26, 10.1109/TNANO.2003.820815 Premananda, 2019, Compact QCA based JK flip-flop for digital system, Int. J. Innov. Technol. Explor. Eng., 8, 3182, 10.35940/ijitee.L3074.1081219 Vetteth, 2003 A. Rezaei, L. Noori, Novel Efficient Designs for QCA JK Flip flop Without Wire-crossing, Int. Acad. J. Sci. Eng. 3 (2) 93–101. Dutta, 2014, New architecture for flip flops using quantum-dot cellular automata, 707 Sheikhfaal, 2015, Designing high speed sequential circuits by quantum-dot cellular automata: Memory cell and counter study, Quantum Matter, 4, 190, 10.1166/qm.2015.1192 Angizi, 2015, Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops, J. Circuits Syst. Comput., 24, 10.1142/S0218126615501534 Chakrabarty, 2018, A novel design of flip-flop circuits using quantum dot cellular automata (QCA), 408 Divshali, 2021, Novel circuits design for SISO shift register in QCA technology, J. Circuits Syst. Comput., 30, 10.1142/S0218126621502030 Niknezhad Divshali, 2022, Novel multilayer SISO shift register architecture in QCA technology and its usage in communications, Int. J. Commun. Syst., 35 Jeon, 2020, Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations, J. Supercomput., 76, 6438, 10.1007/s11227-019-02962-y Divshali, 2018, Towards multilayer QCA SISO shift register based on efficient D-FF circuits, Internat. J. Theoret. Phys., 57, 3326, 10.1007/s10773-018-3846-8 Srivastava, 2011, Qcapro-an error-power estimation tool for QCA circuit design, 2377 Timler, 2002, Power gain and dissipation in quantum-dot cellular automata, J. Appl. Phys., 91, 823, 10.1063/1.1421217 Srivastava, 2008, Estimation of upper bound of power dissipation in QCA circuits, IEEE Trans. Nanotechnol., 8, 116, 10.1109/TNANO.2008.2005408 Mukhopadhyay, 2015, A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops, Microelectron. J., 46, 519, 10.1016/j.mejo.2015.03.001 Rad, 2017, Reversible flip-flops in quantum-dot cellular automata, Internat. J. Theoret. Phys., 56, 2990, 10.1007/s10773-017-3466-8 Chakrabarty, 2020, Design of master slave flip flop in quantum dot cellular automata (QCA), 1 Zhang, 2018, Dual-edge triggered JK flip-flop with comprehensive analysis in quantum-dot cellular automata, J. Eng., 2018, 354, 10.1049/joe.2018.0138 Yang, 2010, Design and simulation of sequential circuits in quantum-dot cellular automata: Falling edge-triggered flip-flop and counter study, Microelectron. J., 41, 56, 10.1016/j.mejo.2009.12.008 Lim, 2012, Sequential circuit design using quantum-dot cellular automata (QCA), 162 Kalyan, 2018, Quantum dot cellular automata (QCA) based 4-bit shift register using efficient JK flip flop, Int. J. Pure Appl. Math., 118, 143 Swapna, 2016, Design of sequential circuit using Quantum-Dot Cellular Automata (QCA), Int. J. Adv. Eng. Res. Sci., 3, 10.22161/ijaers/3.9.15 Azhagu Pradeepa, 2019, Design of optimized QCA sequential circuits, SSRG Int. J. Electron. Commun. Eng., 5