Design of Low Power and Robust Asynchronous SRAM Generated Using AMC Involving SAHB Circuit with QDI Logic
Tóm tắt
Từ khóa
Tài liệu tham khảo
C.Geng, D. Ishikawa, S. Kudo, S. Nakatake, Verification of Open-Source Memory Compiler Framework with a Practical PDK, in 2021 4th International Conference on Circuits, Systems and Simulation (ICCSS), (Kuala Lumpur, Malaysia, 2021), pp. 123–129, doi: https://doi.org/10.1109/ICCSS51193.2021.9464193.
S. Pousia, R. Manjith, Design of low power high speed SRAM architecture using SK-LCT technique, in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1-7 (2018)
J. Chen, W. Zhao, Y. Wang, Y. Ha, Analysis and optimization strategies toward reliable and high-speed 6T compute SRAM. IEEE Trans. Circuits Syst. I Regul. Pap. 68(4), 1520–1531 (2021)
C. A. Kumar, B. K. Madhavi, K. Lalkishore, Performance analysis of low power 6T SRAM cell in 180nm and 90nm, in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), (Chennai, India, 2016), pp. 351–357, doi: https://doi.org/10.1109/AEEICB.2016.7538307.
J. Zhou, K. Singh, J. Huisken, "Standard cell based memory compiler for near/sub-threshold operation," in 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), (Glasgow, UK, 2020), pp. 1–4, doi: https://doi.org/10.1109/ICECS49266.2020.9294808.
S. Wu, X. Zheng, Z. Gao, X. He, A 65nm embedded low power SRAM compiler, in 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems, (Vienna, Austria, 2010), pp. 123–124, doi: https://doi.org/10.1109/DDECS.2010.5491802.
B Majumdar, S. Basu, Low power single bitline 6T SRAM cell with high read stability, in 2011 International Conference on Recent Trends in Information Systems, pp. 169–174 (2011)
M. Wieckowski, “GDS mill user manual.” http://michaelwieckowski.com/wp-content/uploads/2012/01/GdsMillUserManual.pdf, (2012)
Saurabh and P. Srivastava, Low power 6T-SRAM, in 2012 International Conference on Emerging Electronics, pp. 1–4 (2012) doi: https://doi.org/10.1109/ICEmElec.2012.6636251.
K.-S. Chong, W.-G. Ho, T. Lin, B.-H. Gwee, J.S. Chang, Sense amplifier half-buffer (SAHB) a low-power high-performance asynchronous logic QDI cell template. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 25(2), 402–415 (2017). https://doi.org/10.1109/TVLSI.2016.2583118
R. Goldman, K. Bartleson, T. Wood, V. Melikyan, E. Babayan, Synopsys educational generic memory compiler, in 10th European Workshop on Microelectronics Education (EWME), p. 8992 (2014).
Y. Xu, Z. Gao, X. He, A Flexible Embedded SRAM IP Compiler, In 2007 IEEE International Symposium on Circuits and Systems (New Orleans, LA, USA, 2007), pp. 3756-3759, doi: https://doi.org/10.1109/ISCAS.2007.378778.
A. Pathak, D. Sachan, H. Peta, M. Goswami, A Modified SRAM Based Low Power Memory Design, in 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 122–127 (2016) doi: https://doi.org/10.1109/VLSID.2016.80.
T. Shah et al., “FabMem: A multiported RAM and CAM compiler for superscalar design space exploration.” (2010) [Online].
K. Kushida et al., A 0.7 v single-supply sram with 0.495 µm2 cell in 65 nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme. IEEE JSSC 44(4), 1192–1198 (2009)
J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R. Southworth, U. Cummings, The design of an asynchronous MIPS R3000 microprocessor, in Advanced Research in VLSI, pp. 164–181 (1997).
S. Miyano et al., Highly energy-efficient SRAM with hierarchical bit line charge-sharing method using non-selected bit line charges. IEEE J. Solid-State Circuits 48(4), 924–931 (2013). https://doi.org/10.1109/JSSC.2012.2237572
A. Bhaskar, Design and analysis of low power SRAM cells, in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–5 (2017)
K. Rajput, M. Pattanaik, Implementation of boolean and arithmetic functions with 8T SRAM cell for in-memory computation, in 2020 International Conference for Emerging Technology (INCET), pp. 1-5 (2020)
F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9
Lee, D. Seo, Y. Li, M. Kim, S. Baeck, 4nm Voltage auto-tracking SRAM pulse generator with fully RC optimized row auto-tracking write assist circuits, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), (Honolulu, HI, USA, 2022), pp. 218-219, doi: https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830456.
H-C Chow, S-H Chang, High performance sense amplifier circuit for low power SRAM applications, in 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), pp. II-741. (2004)
W.G. Ho, K.S. Chong, K.Z.L. Ne, B.-H. Gwee, J.S. Chang, Asynchronous-logic QDI quad-rail sense-amplifier half-buffer approach for noc router design. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 26(1), 196–200 (2018). https://doi.org/10.1109/TVLSI.2017.2750171
S. Rani, Dr.J. Sudhakar. Multi objective analysis of standard cells using sense amplifier based qdi approach. (2018)
J. M. Rabaey, A. Chandrakasan, B. Nikolic, Designing arithmetic building blocks, in Digital Integrated Circuits, 3rd ed. (Englewood Cliffs, NJ, USA: Prentice-Hall, 2008), ch. 11, pp. 559–622
M. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, M. Sarwar, OpenRAM: An open-source memory compiler, in IEEE International Conference on Computer Aided Design (ICCAD), (2016).