Design of Fractional Order Cascaded Controller for AGC of a Deregulated Power System
Tóm tắt
Từ khóa
Tài liệu tham khảo
Azizivahed, A., Arefi, A., Naderi, E., Narimani, H., Fathi, M., & Narimani, M. R. (2020). An efficient hybrid approach to solve bi-objective multi-area dynamic economic emission dispatch problem. Electric Power Components and Systems, 48(4–5), 485–500. https://doi.org/10.1080/15325008.2020.1793830
Bhatt, P., Roy, R., & Ghoshal, S. P. (2010). Optimized multi area AGC simulation in restructured power systems. Electric Power Energy System, 32, 311–322. https://doi.org/10.1016/j.ijepes.2009.09.002
Demiroren, A., & Zeynelgil, H. L. (2007). GA application to optimization of AGC in three-area power system after deregulation. International Journal of Electrical Power & Energy Systems, 29, 230–240. https://doi.org/10.1016/j.ijepes.2006.07.005
Dhundhara, S., & Verma, Y. P. (2018). Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system. Energy, 147, 1108–1128. https://doi.org/10.1016/j.energy.2018.01.076
Donde, V., Pai, M. A., & Hiskens, I. A. (2010). Simulation and optimization in an AGC system after deregulation. IEEE Transactions on Power System, 16(3), 311–322. https://doi.org/10.1109/59.932285
Farook, S., & Raju, P. S. (2013). Decentralized fractional order PID controller for AGC in a multi area deregulated power system. International Journal of Advances in Electrical and Electronics Engineering, 1(3), 317–332.
Guha, D., Roy, P. K., & Banerjee, S. (2018). Symbiotic organism search algorithm applied to load frequency control of multi-area power system. Energy Systems, 9(2), 439–468. https://doi.org/10.1007/s12667-017-0232-1
Jena, N. K., Sahoo, S., & Sahu, B. K. (2020). Fractional order cascaded controller for AGC study in power system with PV and diesel generating units. Journal of Interdisciplinary Mathematics, 23(2), 425–434. https://doi.org/10.1080/09720502.2020.1731955
Kumar, J., Kahhoe, N., & Gerald, S. (1997). AGC simulator for price-based operation. Part 1. A. Model. IEEE Transactions on Power Systems, 12(2), 527–532. https://doi.org/10.1109/59.589593
Kumar, N., Tyagi, B., & Kumar, V. (2018). Application of fractional order PID controller for AGC under deregulated environment. International Journal of Automation and Computing, 15(1), 84–93. https://doi.org/10.1007/s11633-016-1036-9
Mohanty, B., & Hota, P. K. (2015). Comparative performance analysis of fruit fly optimisation algorithm for multi-area multi-source automatic generation control under deregulated environment. IET Generation, Transmission & Distribution, 9(14), 1845–1855. https://doi.org/10.1049/iet-gtd.2015.0284
Morsali, J., Zare, K., & Hagh, M. T. (2017). MGSO optimised TID-based GCSC damping controller in coordination with AGC for diverse-GENCOs multi-DISCOs power system with considering GDB and GRC non-linearity effects. IET Generation, Transmission & Distribution, 11(1), 193–208. https://doi.org/10.1049/iet-gtd.2016.0828
Naderi, E., Narimani, H., Pourakbari-Kasmaei, M., Cerna, F. V., Marzband, M., & Lehtonen, M. (2021a). State-of-the-art of optimal active and reactive power flow: A comprehensive review from various standpoints. Processes, 9(8), 1319. https://doi.org/10.3390/pr9081319
Naderi, E., Pourakbari-Kasmaei, M., & Abdi, H. (2019). An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices. Applied Soft Computing, 80, 243–262. https://doi.org/10.1016/j.asoc.2019.04.012
Naderi, E., Pourakbari-Kasmaei, M., Cerna, F. V., & Lehtonen, M. (2021b). A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems. International Journal of Electrical Power & Energy Systems, 125, 106492. https://doi.org/10.1016/j.ijepes.2020.106492
Naderi, E., Pourakbari-Kasmaei, M., & Lehtonen, M. (2020). Transmission expansion planning integrated with wind farms: A review, comparative study, and a novel profound search approach. International Journal of Electrical Power & Energy Systems, 115, 105460. https://doi.org/10.1016/j.ijepes.2019.105460
Nasiruddin, I., Bhatti, T. S., & Hakimuddin, N. (2015). Automatic generation control in an interconnected power system incorporating diverse source power plants using bacteria foraging optimization technique. International Journal on Electric Power Components and Systems, 43, 189–199. https://doi.org/10.1080/15325008.2014.975871
Nayak, J. R., & Shaw, B. (2019). Implementation of quasi-oppositional-based GHS optimized fractional order PID controller in deregulated power system. In Soft computing in data analytics (pp. 59–71). Springer. https://doi.org/10.1007/978-981-13-0514-6_7
Nayak, J. R., Shaw, B., & Sahu, B. K. (2020). Novel application of optimal fuzzy-adaptive symbiotic organism search based two-degree-of-freedom fuzzy proportional integral derivative controller for automatic generation control study. International Transactions on Electrical Energy Systems. https://doi.org/10.1002/2050-7038.12349
Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency band complex non-integer differentiator: Characterisation and synthesis. IEEE Transaction on Circuits and Systems/fundamental Theory and Applications, 47(1), 25–39. https://doi.org/10.1109/81.817385
Pan, I., & Das, S. (2016). Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions, 62, 19–29. https://doi.org/10.1016/j.isatra.2015.03.003
Parida, M., & Nanda, J. (2005). Automatic generation control of a hydro-thermal system in deregulated environment. In IEEE International conference on electrical machines and systems (Vol. 2, pp. 942–947). https://doi.org/10.1109/ICEMS.2005.202683
Podlubny, I. (1999). Fractional-order systems and PI/sup/spl/lambda//D/sup/spl/mu//-controllers. IEEE Transactions on Automatic Control, 44(1), 208–214. https://doi.org/10.1109/9.739144
Rahman, A., Saikia, L. C., & Sinha, N. (2015). Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three-degree-of-freedom integral-derivative controller. IET Generation, Transmission & Distribution, 9(15), 2284–2293. https://doi.org/10.1049/iet-gtd.2015.0317
Raj, U., & Shankar, R. (2020). Deregulated automatic generation control using novel opposition-based interactive search algorithm cascade controller including distributed generation and electric vehicle. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 1–19. https://doi.org/10.1007/s40998-019-00306-3
Rosaline, D. A., & Somarajan, U. (2019). Structured H-Infinity controller for an uncertain deregulated power system. IEEE Transactions on Industry Applications, 55(1), 892–906. https://doi.org/10.1109/TIA.2018.2866560
Saha, A., & Saikia, L. C. (2018). Combined application of redox flow battery and DC link in restructured AGC system in the presence of WTS and DSTS in distributed generation unit. IET Generation, Transmission & Distribution, 12(9), 2072–2085. https://doi.org/10.1049/iet-gtd.2017.1203
Sahoo, S., Jena, N. K., Dei, G., & Sahu, B. K. (2019). Self-adaptive fuzzy-PID controller for AGC study in deregulated power system. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 7(4), 650–663. https://doi.org/10.11591/ijeei.v7i4.1418
Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S. (2015). Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Applied Soft Computing, 27, 240–249. https://doi.org/10.1016/j.asoc.2014.11.027
Saikia, L. C., & Debbarma, S. (2011). Application of a non-integer controller in AGC of a two area thermal system under deregulated environment: A preliminary study. In IET International conference on sustainable energy and intelligence system (SEISCON) (pp. 390–395). https://doi.org/10.1049/cp.2011.0395
Sekhar, G. C., Sahu, R. K., Baliarsingh, A. K., & Panda, S. (2016). Load frequency control of power system under deregulated environment using optimal firefly algorithm. International Journal of Electrical Power & Energy Systems, 74, 195–211. https://doi.org/10.1016/j.ijepes.2015.07.025
Shabani, H., Vahidi, B., & Ebrahimpour, M. (2013). A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems. ISA Transactions, 52(1), 88–95. https://doi.org/10.1016/j.isatra.2012.09.008
Shankar, R., Kumar, A., Raj, U., & Chatterjee, K. (2019). Fruit fly algorithm-based automatic generation control of multi-area interconnected power system with FACTS and AC/DC links in deregulated power environment. International Transactions on Electrical Energy Systems, 29(1), 2690. https://doi.org/10.1002/etep.2690
Shefaei, A., & Mohammadi-Ivatloo, B. (2018). Wild goats algorithm, an evolutionary algorithm to solve the real-world optimization problems. IEEE Transactions on Industrial Informatics, 14(7), 2951–2961. https://doi.org/10.1109/TII.2017.2779239
Tasnin, W., & Saikia, L. C. (2018). Performance comparison of several energy storage devices in deregulated AGC of a multi-area system incorporating geothermal power plant. IET Renewable Power Generation, 12(7), 761–772. https://doi.org/10.1049/iet-rpg.2017.0582
Thakur, N., Awasthi, Y. K., Hooda, M., & Siddiqui, A. S. (2019). Adaptive whale optimization for intelligent multi-constraints power quality improvement under deregulated environment. Journal of Engineering, Design and Technology, 17(3), 490–514. https://doi.org/10.1108/JEDT-08-2018-0130