Design of Fractional Order Cascaded Controller for AGC of a Deregulated Power System

Journal of Control, Automation and Electrical Systems - Tập 33 Số 5 - Trang 1389-1417 - 2022
Narendra Kumar Jena1, Subhadra Sahoo1, Binod Kumar Sahu1, Kanungo Barada Mohanty2
1Department of Electrical Engineering, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India
2Department of Electrical Engineering, NIT Rourkela, Rourkela, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azizivahed, A., Arefi, A., Naderi, E., Narimani, H., Fathi, M., & Narimani, M. R. (2020). An efficient hybrid approach to solve bi-objective multi-area dynamic economic emission dispatch problem. Electric Power Components and Systems, 48(4–5), 485–500. https://doi.org/10.1080/15325008.2020.1793830

Bhatt, P., Roy, R., & Ghoshal, S. P. (2010). Optimized multi area AGC simulation in restructured power systems. Electric Power Energy System, 32, 311–322. https://doi.org/10.1016/j.ijepes.2009.09.002

Demiroren, A., & Zeynelgil, H. L. (2007). GA application to optimization of AGC in three-area power system after deregulation. International Journal of Electrical Power & Energy Systems, 29, 230–240. https://doi.org/10.1016/j.ijepes.2006.07.005

Dhundhara, S., & Verma, Y. P. (2018). Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system. Energy, 147, 1108–1128. https://doi.org/10.1016/j.energy.2018.01.076

Donde, V., Pai, M. A., & Hiskens, I. A. (2010). Simulation and optimization in an AGC system after deregulation. IEEE Transactions on Power System, 16(3), 311–322. https://doi.org/10.1109/59.932285

Farook, S., & Raju, P. S. (2013). Decentralized fractional order PID controller for AGC in a multi area deregulated power system. International Journal of Advances in Electrical and Electronics Engineering, 1(3), 317–332.

Guha, D., Roy, P. K., & Banerjee, S. (2018). Symbiotic organism search algorithm applied to load frequency control of multi-area power system. Energy Systems, 9(2), 439–468. https://doi.org/10.1007/s12667-017-0232-1

Jena, N. K., Sahoo, S., & Sahu, B. K. (2020). Fractional order cascaded controller for AGC study in power system with PV and diesel generating units. Journal of Interdisciplinary Mathematics, 23(2), 425–434. https://doi.org/10.1080/09720502.2020.1731955

Kumar, J., Kahhoe, N., & Gerald, S. (1997). AGC simulator for price-based operation. Part 1. A. Model. IEEE Transactions on Power Systems, 12(2), 527–532. https://doi.org/10.1109/59.589593

Kumar, N., Tyagi, B., & Kumar, V. (2018). Application of fractional order PID controller for AGC under deregulated environment. International Journal of Automation and Computing, 15(1), 84–93. https://doi.org/10.1007/s11633-016-1036-9

Mohanty, B., & Hota, P. K. (2015). Comparative performance analysis of fruit fly optimisation algorithm for multi-area multi-source automatic generation control under deregulated environment. IET Generation, Transmission & Distribution, 9(14), 1845–1855. https://doi.org/10.1049/iet-gtd.2015.0284

Morsali, J., Zare, K., & Hagh, M. T. (2017). MGSO optimised TID-based GCSC damping controller in coordination with AGC for diverse-GENCOs multi-DISCOs power system with considering GDB and GRC non-linearity effects. IET Generation, Transmission & Distribution, 11(1), 193–208. https://doi.org/10.1049/iet-gtd.2016.0828

Naderi, E., Narimani, H., Pourakbari-Kasmaei, M., Cerna, F. V., Marzband, M., & Lehtonen, M. (2021a). State-of-the-art of optimal active and reactive power flow: A comprehensive review from various standpoints. Processes, 9(8), 1319. https://doi.org/10.3390/pr9081319

Naderi, E., Pourakbari-Kasmaei, M., & Abdi, H. (2019). An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices. Applied Soft Computing, 80, 243–262. https://doi.org/10.1016/j.asoc.2019.04.012

Naderi, E., Pourakbari-Kasmaei, M., Cerna, F. V., & Lehtonen, M. (2021b). A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems. International Journal of Electrical Power & Energy Systems, 125, 106492. https://doi.org/10.1016/j.ijepes.2020.106492

Naderi, E., Pourakbari-Kasmaei, M., & Lehtonen, M. (2020). Transmission expansion planning integrated with wind farms: A review, comparative study, and a novel profound search approach. International Journal of Electrical Power & Energy Systems, 115, 105460. https://doi.org/10.1016/j.ijepes.2019.105460

Nasiruddin, I., Bhatti, T. S., & Hakimuddin, N. (2015). Automatic generation control in an interconnected power system incorporating diverse source power plants using bacteria foraging optimization technique. International Journal on Electric Power Components and Systems, 43, 189–199. https://doi.org/10.1080/15325008.2014.975871

Nayak, J. R., & Shaw, B. (2019). Implementation of quasi-oppositional-based GHS optimized fractional order PID controller in deregulated power system. In Soft computing in data analytics (pp. 59–71). Springer. https://doi.org/10.1007/978-981-13-0514-6_7

Nayak, J. R., Shaw, B., & Sahu, B. K. (2020). Novel application of optimal fuzzy-adaptive symbiotic organism search based two-degree-of-freedom fuzzy proportional integral derivative controller for automatic generation control study. International Transactions on Electrical Energy Systems. https://doi.org/10.1002/2050-7038.12349

Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency band complex non-integer differentiator: Characterisation and synthesis. IEEE Transaction on Circuits and Systems/fundamental Theory and Applications, 47(1), 25–39. https://doi.org/10.1109/81.817385

Pan, I., & Das, S. (2016). Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions, 62, 19–29. https://doi.org/10.1016/j.isatra.2015.03.003

Parida, M., & Nanda, J. (2005). Automatic generation control of a hydro-thermal system in deregulated environment. In IEEE International conference on electrical machines and systems (Vol. 2, pp. 942–947). https://doi.org/10.1109/ICEMS.2005.202683

Podlubny, I. (1999). Fractional-order systems and PI/sup/spl/lambda//D/sup/spl/mu//-controllers. IEEE Transactions on Automatic Control, 44(1), 208–214. https://doi.org/10.1109/9.739144

Rahman, A., Saikia, L. C., & Sinha, N. (2015). Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three-degree-of-freedom integral-derivative controller. IET Generation, Transmission & Distribution, 9(15), 2284–2293. https://doi.org/10.1049/iet-gtd.2015.0317

Raj, U., & Shankar, R. (2020). Deregulated automatic generation control using novel opposition-based interactive search algorithm cascade controller including distributed generation and electric vehicle. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 1–19. https://doi.org/10.1007/s40998-019-00306-3

Rosaline, D. A., & Somarajan, U. (2019). Structured H-Infinity controller for an uncertain deregulated power system. IEEE Transactions on Industry Applications, 55(1), 892–906. https://doi.org/10.1109/TIA.2018.2866560

Saha, A., & Saikia, L. C. (2018). Combined application of redox flow battery and DC link in restructured AGC system in the presence of WTS and DSTS in distributed generation unit. IET Generation, Transmission & Distribution, 12(9), 2072–2085. https://doi.org/10.1049/iet-gtd.2017.1203

Sahoo, S., Jena, N. K., Dei, G., & Sahu, B. K. (2019). Self-adaptive fuzzy-PID controller for AGC study in deregulated power system. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 7(4), 650–663. https://doi.org/10.11591/ijeei.v7i4.1418

Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S. (2015). Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Applied Soft Computing, 27, 240–249. https://doi.org/10.1016/j.asoc.2014.11.027

Saikia, L. C., & Debbarma, S. (2011). Application of a non-integer controller in AGC of a two area thermal system under deregulated environment: A preliminary study. In IET International conference on sustainable energy and intelligence system (SEISCON) (pp. 390–395). https://doi.org/10.1049/cp.2011.0395

Sekhar, G. C., Sahu, R. K., Baliarsingh, A. K., & Panda, S. (2016). Load frequency control of power system under deregulated environment using optimal firefly algorithm. International Journal of Electrical Power & Energy Systems, 74, 195–211. https://doi.org/10.1016/j.ijepes.2015.07.025

Shabani, H., Vahidi, B., & Ebrahimpour, M. (2013). A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems. ISA Transactions, 52(1), 88–95. https://doi.org/10.1016/j.isatra.2012.09.008

Shankar, R., Kumar, A., Raj, U., & Chatterjee, K. (2019). Fruit fly algorithm-based automatic generation control of multi-area interconnected power system with FACTS and AC/DC links in deregulated power environment. International Transactions on Electrical Energy Systems, 29(1), 2690. https://doi.org/10.1002/etep.2690

Shefaei, A., & Mohammadi-Ivatloo, B. (2018). Wild goats algorithm, an evolutionary algorithm to solve the real-world optimization problems. IEEE Transactions on Industrial Informatics, 14(7), 2951–2961. https://doi.org/10.1109/TII.2017.2779239

Tasnin, W., & Saikia, L. C. (2018). Performance comparison of several energy storage devices in deregulated AGC of a multi-area system incorporating geothermal power plant. IET Renewable Power Generation, 12(7), 761–772. https://doi.org/10.1049/iet-rpg.2017.0582

Thakur, N., Awasthi, Y. K., Hooda, M., & Siddiqui, A. S. (2019). Adaptive whale optimization for intelligent multi-constraints power quality improvement under deregulated environment. Journal of Engineering, Design and Technology, 17(3), 490–514. https://doi.org/10.1108/JEDT-08-2018-0130

Tripathy, S. C., Balasubramanian, R., & Nair, P. (1992). Effect of superconducting magnetic energy storage on automatic generation control considering governor dead band and boiler dynamics. IEEE Transactions on Power Systems, 7(3), 266–273. https://doi.org/10.1109/59.207343