Design of Cr2O3@ZnO Hetero-junction Hierarchical Nanostructures with Enhanced Xylene-sensing Properties
Tóm tắt
Cr2O3@ZnO hetero-junction hierarchical nanostructures were designed to be enhanced xylene sensing material, and thereinto, flower-like ZnO hierarchical nanostructures were synthesized via a solution-based method, and then Cr2O3 particles were developed on the surface of ZnO petals via a solvothermal method. From the results of XRD patterns, SEM and TEM images, it can be observed that ZnO has a high-quallity crystallinity and Cr2O3 particles scatter uniformly on the suruface of ZnO. The products with different ratios of Cr2O3 were used to fabricate gas sensors, and the result indicates that the hetero-junction structures prompt the response to xylene, and the reason may be attributed to the decrease of main carriers concentration caused by the p-n junction between ZnO(n-type semiconductor) and Cr2O3(p-type semiconductor), as well as the catalytic oxidation effect on methyl groups of the xylene by Cr2O3.
Tài liệu tham khảo
Qu F., Feng C., Li C., Li W., Wen S., Ruan S., Zhang H., IJACT, 2014, 11, 619
Lin Y., Wei W., Li Y., Li F., Zhou J., Sun D., Chen Y., Ruan S., J. Alloys Comp., 2015, 651, 690
Liu J., Guo W., Qu F., Feng C., Li C., Zhu L., Zhou J., Ruan S., Chen W., Ceramics International, 2014, 40, 6685
Wang S., Wang Y., Zhang H., Gao X., Yang J., Wang Y., RSC Adv., 2014, 4, 30840
Li F., Li Y., Jing F., Zhou J., Chen Y., Sun D., Ruan S., RSC Adv., 2015, 5, 85598
Zhao C., Fu J., Zhang Z., Xie E., RSC Adv., 2013, 3, 4018
Deng S., Liu X., Chen N., Deng D., Xiao X., Wang Y., Sens. Actua-tors B: Chem., 2016, 233, 615
Lee J. H., Sens. Actuators B: Chem., 2009, 140, 319
Feng J. J., Liao Q. C., Wang A. J., Chen J. R., Cryst. Eng. Comm., 2011, 13, 4202
Bhirud A., Sathaye S., Waichal R., Park C. J., Kale B., J. Mater. Chem. A, 2015, 3, 17050
Wu D., Gao Z., Xu F., Shi Z., Tao W., Jiang K., Cryst. Eng. Comm., 2012, 14, 7934
Liang Z., Zhang Q., Jiang L., Cao G., Energy Environ. Sci., 2015, 8, 3442
Maiti S., Pal S., Chattopadhyay K. K., Cryst. Eng. Comm., 2015, 17, 9264
Zhu L., Gu X., Qu F., Zhang J., Feng C., Zhou J., Ruan S., Kang B., Gou P., J. Am. Chem. Soc., 2013, 96(10), 3183
Li C., Lin Y., Li F., Zhu L., Sun D., Shen L., Chen Y., Ruan S., RSC Adv., 2015, 5, 80561
Tian S., Zhang Y., Zeng D., Wang H., Li N., Xie C., Pan C., Zhao X., Phys. Chem. Chem. Phys., 2015, 17, 27437
Woo H. S., Kwak C. H., Chung J. H., Lee J. H., ACS Applied Mate-rials & Interfaces, 2014, 6, 22553
Wang F., Li W., Hou M., Li C., Wang Y., Xia Y., J. Mater. Chem. A, 2015, 3, 1703
Hao W., Chen S., Cai Y., Zhang L., Li Z., Zhang S., J. Mater. Chem. A, 2014, 2, 13801
Hu Z., Xu M., Shen Z., Yu J., J. Mater. Chem. A, 2015, 3, 14046
Amrute A. P., Mondelli C., Pérez-Ramírez J., Catalysis Science & Technology, 2012, 2, 2057
Ye X., Hua W., Yue Y., Dai W., Miao C., Xie Z., Gao Z., New Journal of Chemistry, 2004, 28, 373
Tamiolakis I., Lykakis I. N., Katsoulidis A. P., Malliakas C. D., Armatas G. S., J. Mater. Chem., 2012, 22, 6919
Wang S., Li Z., Wang P., Xiao C., Zhao R., Xiao B., Yang T., Zhang M., Cryst. Eng. Comm., 2014, 16, 5716
Qu F., Wang Y., Liu J., Wen S., Chen Y., Ruan S., Materials Letters, 2014, 132, 167
Kim H. J., Yoon J. W., Choi K. I., Jang H. W., Umar A., Lee J. H., Nanoscale, 2013, 5, 7066
Ramasamy P., Kim J., Materials Letters, 2013, 93, 52
Cao J., Xu Y., Sui L., Zhang X., Gao S., Cheng X., Zhao H., Huo L., Sens. Actuators B: Chem., 2015, 220, 910
Desimoni E., Surface and Interface Analysis, 1988, 13, 173
Mischler S., Mathieu H. J., Landolt D., Surface and Interface Analy-sis, 1988, 11, 182
Wang Y., Jiang D., Wei W., Zhu L., Shen L., Wen S., Ruan S., RSC Adv., 2015, 5, 50336
Lim S. K., Hwang S. H., Chang D., Kim S., Sens. Actuators B: Chem., 2010, 149, 28
Li C., Feng C., Qu F., Liu J., Zhu L., Lin Y., Wang Y., Li F., Zhou J., Ruan S., Sens. Actuators B: Chem., 2015, 207, 90
Qu F., Jiang H., Yang M., Nanoscale, 2016, 8 16349