Design methodology of standing-wave thermoacoustic refrigerator: theoretical analysis
Tóm tắt
Tài liệu tham khảo
Alamir, M. A., & Sidik, N. A. C. (2021). Thermoacoustic Refrigerators and Heat Pumps: New Insights for A High Performance. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(1), 146–156. https://doi.org/10.37934/arfmts.78.1.146156
Zolpakar, N. A., Mohd-Ghazali, N., & El-Fawal, M. H. (2016). Performance analysis of the standing wave thermoacoustic refrigerator: A review. Renewable and Sustainable Energy Reviews, 54, 626–634. https://doi.org/10.1016/j.rser.2015.10.018
Tartibu, L. K. (2016). A sustainable solution for refrigeration using thermo-acoustic technology (March 2016). IInternational Conference on the Domestic Use of Energy (DUE), 1–8. https://doi.org/10.1109/DUE.2016.7466714
Keolian, R. M., Garrett, S. L., & Garrett, S. L. (2018). Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Second Edition. Acoustical Society of America Journal, 143(4), 2110-2110. https://doi.org/10.1121/1.5031020
Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design construction and performance of 10 W thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 25(03), 1750023. https://doi.org/10.1142/S2010132517500237
Mahmood, O. S., Karim, A. M. A., Yahya, S. G., & Azzawi, I. D. J. (2020). Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design. International Journal of Air-Conditioning and Refrigeration, 28(04), 2050035. https://doi.org/10.1142/S2010132520500352
Swift, G. W. (1988). Thermoacoustic engines. The Journal of the Acoustical Society of America, 84(4), 1145–1180. https://doi.org/10.1121/1.396617
Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics, 20, 135–175. https://doi.org/10.1016/S0065-2156(08)70233-3
Hofler, T. J. (1986).Thermoacoustic Refrigerator Design and Performance (Heat Engine, Resonator, Microphone). PhD thesis, University of California, San Diego. https://www.proquest.com/openview/46e288d402bfc5f48cb23c693bbb17b9/1?pqorigsite=gscholar&cbl=18750&diss=y
Adeff, J. A., & Hofler, T. J. (2000). Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. The Journal of the Acoustical Society of America, 107(6), L37–L42. https://doi.org/10.1121/1.429324
Wetzel, M., & Herman, C. (1997). Design optimization of thermoacoustic refrigerators. International Journal of Refrigeration, 20(1), 3–21. https://doi.org/10.1016/S0140-7007(96)00064-3
Tijani, M. E. H., Zeegers, J. C. H., & De Waele, A. T. A. M. (2002). Construction andperformance of a thermoacoustic refrigerator. Cryogenics, 42(1), 59–66. https://doi.org/10.1016/S0011-2275(01)00180-1
Alamir, M. A. (2019). Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. International Journal of Green Energy, 16(8), 639–651. https://doi.org/10.1080/15435075.2019.1602533
Zolpakar, N. A., & Mohd-Ghazali, N. (2019). Comparison of a thermoacoustic refrigerator stack performance: Mylar spiral, celcor substrates and 3D printed stacks. International Journal of Air-Conditioning and Refrigeration, 27(03), 1950021. https://doi.org/10.1142/S2010132519500214
Tijani, M. E. H., Zeegers, J. C. H., & De Waele, A. (2002). The optimal stack spacing for thermoacoustic refrigeration. The Journal of the Acoustical Society of America, 112(1), 128–133. https://doi.org/10.1121/1.1487842
Alcock, A. C., Tartibu, L. K., & Jen, T. C. (2017). Experimental investigation of ceramic substrates in standing wave thermoacoustic refrigerator. Procedia Manufacturing, 7, 79–85. https://doi.org/10.1016/j.promfg.2016.12.021
Atiqah Zolpakar, N., Mohd-Ghazali, N., & Ahmad, R. (2017). Optimization of the stack unit in a thermoacoustic refrigerator. Heat Transfer Engineering, 38(4), 431–437. https://doi.org/10.1080/01457632.2016.1195138
Kajurek, J., Rusowicz, A., & Grzebielec, A. (2019). Design and simulation of a small capacity thermoacoustic refrigerator. SN Applied Sciences, 1(6), 1–9. https://doi.org/10.1007/s42452-019-0569-2
Prashantha, B. G., Swamy, D. R., Soragaon, B., & Nanjundeswaraswamy, T. S. (2020). Design optimization and analysis of thermoacoustic refrigerators. Int. J. Air-Conditioning Refrig., 28(3), 2050020. https://doi.org/10.1142/S2010132520500200
Timmer, M. A., de Blok, K., & van der Meer, T. H. (2018). Review on the conversion of thermoacoustic power into electricity. The Journal of the Acoustical Society of America, 143(2), 841–857. https://doi.org/10.1121/1.5023395
Yu, Z., Saechan, P., & Jaworski, A. J. (2011). A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators. Applied acoustics, 72(5), 260–267. https://doi.org/10.1016/j.apacoust.2010.11.011
Yahya, S. G., Azzawi, I. D., Abbas, M. K., & Al-Rubaiy, A. A. (2019). Characteristics of acoustic drivers for efficient coupling to thermoacoustic machines. Proc. of the Int. MultiConference of Engineers and Computer Scientists, Hong Kong, IMECS 2019, 469–474. http://www.iaeng.org/publication/IMECS2019/IMECS2019_pp469-474.pdf
Ke, H., He, Y., Liu, Y., & Cui, F. (2012). Mixture working gases in thermoacoustic engines for different applications. International Journal of Thermophysics, 33(7), 1143–1163. https://doi.org/10.1007/s10765-012-1268-z
Bouramdane, Z., Bah, A., Alaoui, M., & Martaj, N. (2022). Numerical analysis of thermoacoustically driven thermoacoustic refrigerator with a stack of parallel plates having corrugated surfaces. International Journal of Air-Conditioning and Refrigeration, 30(1), 1–19. https://doi.org/10.1007/s44189-022-00002-8
