Design methodology of standing-wave thermoacoustic refrigerator: theoretical analysis

Mohanad Q. Kamil1, Samir Gh. Yahya1, Itimad D. J. Azzawi1
1Department of Mechanical Engineering, College of Engineering, University of Diyala, Baqubah, Iraq

Tóm tắt

Thermoacoustic refrigeration systems are one of the best alternative solutions for conventional refrigeration systems that are harmful to the environment and humans due to global warming and ozone layer depletion issues. Thermoacoustic technology can be considered a renewable and clean technology with a promising future for its many advantages. A thermoacoustic refrigerator converts acoustic energy to thermal energy (creating a cooling effect). In the present research, the focus is on the design of a standing-wave thermoacoustic refrigerator driven by an ordinary loudspeaker using the numerical simulation program DELTAEC with the concern of building the apparatus at a low cost. In addition, investigating the influence of some crucial parameters on cooling power and thermal/overall performance. Hence, the designed thermoacoustic refrigerator performed well in respect of cooling power and coefficient of performance. It has achieved a cooling power of 134.34 W with a temperature difference between the ambient and cold heat exchangers of 25 K at a COP of 1.956 and the overall efficiency (electrical power converted into cooling power) amounted to 113.43%. The achieved cooling power and COP could be significant when compared to others’ results.

Tài liệu tham khảo

Alamir, M. A., & Sidik, N. A. C. (2021). Thermoacoustic Refrigerators and Heat Pumps: New Insights for A High Performance. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(1), 146–156. https://doi.org/10.37934/arfmts.78.1.146156

Zolpakar, N. A., Mohd-Ghazali, N., & El-Fawal, M. H. (2016). Performance analysis of the standing wave thermoacoustic refrigerator: A review. Renewable and Sustainable Energy Reviews, 54, 626–634. https://doi.org/10.1016/j.rser.2015.10.018

Tartibu, L. K. (2016). A sustainable solution for refrigeration using thermo-acoustic technology (March 2016). IInternational Conference on the Domestic Use of Energy (DUE), 1–8. https://doi.org/10.1109/DUE.2016.7466714

Keolian, R. M., Garrett, S. L., & Garrett, S. L. (2018). Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, Second Edition. Acoustical Society of America Journal, 143(4), 2110-2110. https://doi.org/10.1121/1.5031020

Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design construction and performance of 10 W thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 25(03), 1750023. https://doi.org/10.1142/S2010132517500237

Mahmood, O. S., Karim, A. M. A., Yahya, S. G., & Azzawi, I. D. J. (2020). Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design. International Journal of Air-Conditioning and Refrigeration, 28(04), 2050035. https://doi.org/10.1142/S2010132520500352

Swift, G. W. (1988). Thermoacoustic engines. The Journal of the Acoustical Society of America, 84(4), 1145–1180. https://doi.org/10.1121/1.396617

Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics, 20, 135–175. https://doi.org/10.1016/S0065-2156(08)70233-3

Hofler, T. J. (1986).Thermoacoustic Refrigerator Design and Performance (Heat Engine, Resonator, Microphone). PhD thesis, University of California, San Diego. https://www.proquest.com/openview/46e288d402bfc5f48cb23c693bbb17b9/1?pqorigsite=gscholar&cbl=18750&diss=y

Adeff, J. A., & Hofler, T. J. (2000). Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. The Journal of the Acoustical Society of America, 107(6), L37–L42. https://doi.org/10.1121/1.429324

Wetzel, M., & Herman, C. (1997). Design optimization of thermoacoustic refrigerators. International Journal of Refrigeration, 20(1), 3–21. https://doi.org/10.1016/S0140-7007(96)00064-3

Tijani, M. E. H., Zeegers, J. C. H., & De Waele, A. T. A. M. (2002). Construction andperformance of a thermoacoustic refrigerator. Cryogenics, 42(1), 59–66. https://doi.org/10.1016/S0011-2275(01)00180-1

Alamir, M. A. (2019). Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. International Journal of Green Energy, 16(8), 639–651. https://doi.org/10.1080/15435075.2019.1602533

Zolpakar, N. A., & Mohd-Ghazali, N. (2019). Comparison of a thermoacoustic refrigerator stack performance: Mylar spiral, celcor substrates and 3D printed stacks. International Journal of Air-Conditioning and Refrigeration, 27(03), 1950021. https://doi.org/10.1142/S2010132519500214

Tijani, M. E. H., Zeegers, J. C. H., & De Waele, A. (2002). The optimal stack spacing for thermoacoustic refrigeration. The Journal of the Acoustical Society of America, 112(1), 128–133. https://doi.org/10.1121/1.1487842

Alcock, A. C., Tartibu, L. K., & Jen, T. C. (2017). Experimental investigation of ceramic substrates in standing wave thermoacoustic refrigerator. Procedia Manufacturing, 7, 79–85. https://doi.org/10.1016/j.promfg.2016.12.021

Atiqah Zolpakar, N., Mohd-Ghazali, N., & Ahmad, R. (2017). Optimization of the stack unit in a thermoacoustic refrigerator. Heat Transfer Engineering, 38(4), 431–437. https://doi.org/10.1080/01457632.2016.1195138

Kajurek, J., Rusowicz, A., & Grzebielec, A. (2019). Design and simulation of a small capacity thermoacoustic refrigerator. SN Applied Sciences, 1(6), 1–9. https://doi.org/10.1007/s42452-019-0569-2

Prashantha, B. G., Swamy, D. R., Soragaon, B., & Nanjundeswaraswamy, T. S. (2020). Design optimization and analysis of thermoacoustic refrigerators. Int. J. Air-Conditioning Refrig., 28(3), 2050020. https://doi.org/10.1142/S2010132520500200

Timmer, M. A., de Blok, K., & van der Meer, T. H. (2018). Review on the conversion of thermoacoustic power into electricity. The Journal of the Acoustical Society of America, 143(2), 841–857. https://doi.org/10.1121/1.5023395

Yu, Z., Saechan, P., & Jaworski, A. J. (2011). A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators. Applied acoustics, 72(5), 260–267. https://doi.org/10.1016/j.apacoust.2010.11.011

“SEAS: The Art Of Sound Perfection.” http://www.seas.no/ (accessed 28 Apr. 2022).

Yahya, S. G., Azzawi, I. D., Abbas, M. K., & Al-Rubaiy, A. A. (2019). Characteristics of acoustic drivers for efficient coupling to thermoacoustic machines‏. Proc. of the Int. MultiConference of Engineers and Computer Scientists, Hong Kong, IMECS 2019, 469–474. http://www.iaeng.org/publication/IMECS2019/IMECS2019_pp469-474.pdf

Ke, H., He, Y., Liu, Y., & Cui, F. (2012). Mixture working gases in thermoacoustic engines for different applications. International Journal of Thermophysics, 33(7), 1143–1163. https://doi.org/10.1007/s10765-012-1268-z

Bouramdane, Z., Bah, A., Alaoui, M., & Martaj, N. (2022). Numerical analysis of thermoacoustically driven thermoacoustic refrigerator with a stack of parallel plates having corrugated surfaces. International Journal of Air-Conditioning and Refrigeration, 30(1), 1–19. https://doi.org/10.1007/s44189-022-00002-8