Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thiết kế, chế tạo và đánh giá tiết kiệm năng lượng của lớp phản xạ nhiệt trong suốt cấu trúc năm lớp cho ứng dụng cửa sổ
Tóm tắt
Gương nhiệt trong suốt cho phép truyền ánh sáng mặt trời nhìn thấy trong khi phản xạ năng lượng nhiệt hồng ngoại là một công nghệ hiệu quả về hiệu suất năng lượng cho các vùng khí hậu nóng. Trong công trình này, một lớp phủ năm lớp dielectrics/kim loại/dielectrics/kim loại/dielectrics (DMDMD) với cấu trúc Si3N4/Ag/Si3N4/Ag/Si3N4 được đề xuất. Các tính chất bức xạ của các lớp phủ năm lớp được nghiên cứu lý thuyết bằng phương pháp ma trận chuyển. Độ dày của các lớp được tối ưu hóa bằng cách sử dụng phương pháp tối ưu hóa đàn kiến. Mẫu lớp phủ Si3N4/Ag/Si3N4/Ag/Si3N4 được thiết kế được chuẩn bị và hiệu suất năng lượng của tòa nhà khi áp dụng lớp phủ DMDMD trong một phòng văn phòng đơn giản cũng được điều tra, với điều kiện thời tiết nóng của Quảng Châu, Trung Quốc làm ví dụ. Kết quả mô phỏng cho thấy giá trị Tave + Rave của lớp phủ năm lớp cao hơn 8% so với lớp phủ ba lớp, và độ phát xạ sóng dài của lớp phủ năm lớp thấp hơn 24,8% so với lớp phủ ba lớp. Ngoài ra, việc áp dụng các lớp phủ năm lớp trên cửa sổ kính có thể cung cấp tỷ lệ tiết kiệm năng lượng cao nhất là 8,9% so với các lớp phủ thấp-e truyền thống.
Từ khóa
#gương nhiệt trong suốt #lớp phủ năm lớp #hiệu suất năng lượng #điều kiện khí hậu nóng #tối ưu hóa đàn kiếnTài liệu tham khảo
Al-Kuhaili MF, Al-Aswad AH, Durrani SMA, et al. (2012). Energy-saving transparent heat mirrors based on tungsten oxide-gold WO3/Au/WO3 multilayer structures. Solar Energy, 86: 3183–3189.
Al-Shukri AM (2007). Thin film coated energy-efficient glass windows for warm climates. Desalination, 209: 290–297.
Boiadjiev SI, Dobrikov GH, Rassovska MMM (2007). Preparation and properties of RF sputtered indium-tin oxide thin films for applications as heat mirrors in photothermal solar energy conversion. Thin Solid Films, 515: 8465–8468.
Cheema DA, Danial MO, Hanif MB, et al. (2022). Intrinsic properties and future perspective of HfO2/V2O5/HfO2 multi-layer thin films via E-beam evaporation as a transparent heat mirror. Coatings, 12: 448.
Chen H, Lee WL, Wang X (2015). Energy assessment of office buildings in China using China building energy codes and LEED 2.2. Energy and Buildings, 86: 514–524.
Chen Q, Huang Y, Wu H, et al. (2022). A review and prospect on research progress of adjustable transparent envelope. Building Simulation, https://doi.org/10.1007/s12273-022-0944-6
Chiu PK, Cho WH, Chen HP, et al. (2012). Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature. Nanoscale Research Letters, 7: 304.
Cuce E, Riffat SB (2015). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41: 695–714.
Dalapati GK, Masudy-Panah S, Chua ST, et al. (2016). Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application. Scientific Reports, 6: 20182.
Dalapati GK, Kushwaha AK, Sharma M, et al. (2018). Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 95: 42–131.
Dang S, Yi Y, Ye H (2020). A visible transparent solar infrared reflecting film with a low long-wave emittance. Solar Energy, 195: 483–490.
Dang S, Wang X, Ye H (2022). An ultrathin transparent radiative cooling photonic structure with a high NIR reflection. Advanced Materials Interfaces, 9: 2201050.
Dhar A, Alford TL (2013). High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering. APL Materials, 1: 012102.
Durrani SMA, Khawaja EE, Al-Shukri AM, et al. (2004). Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates. Energy and Buildings, 36: 891–898.
EnergyPlus (2020). Wealther Data from EnergyPlus. Available at https://energyplus.net/weather-region/asia_wmo_region_2/CHN%20%20. Accessed 15 Sep 2020.
Hong X, Shi F, Wang S, et al. (2021). Multi-objective optimization of thermochromic glazing based on daylight and energy performance evaluation. Building Simulation, 14: 1685–1695.
JGJ/T 449 (2018). Standard for Green Performance Calculation of Civil Building. (in Chinese)
Karlsson B, Valkonen E, Karlsson T, et al. (1981). Materials for solar-transmitting heat-reflecting coatings. Thin Solid Films, 86: 91–98.
Katsidis CC, Siapkas DI (2002). General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 41: 3978–3987.
Kim JH, Kim DH, Seong TY (2015a). Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices. Ceramics International, 41: 3064–3068.
Kim JH, Lee HK, Na JY, et al. (2015b). Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices. Ceramics International, 41: 8059–8063.
Kim DH, Cho KS, Kim HK (2017). Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters. Scientific Reports, 7: 2550.
Kim J, Baek S, Park JY, et al. (2021). Photonic multilayer structure induced high near-infrared (NIR) blockage as energy-saving window. Small, 17: e2100654.
Lampert CM (1981). Heat mirror coatings for energy conserving windows. Solar Energy Materials, 6: 1–41.
Leftheriotis G, Yianoulis P, Patrikios D (1997). Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications. Thin Solid Films, 306: 92–99.
Leftheriotis G, Papaefthimiou S, Yianoulis P (2000). Integrated low-emittance-electrochromic devices incorporating ZnS/Ag/ZnS coatings as transparent conductors. Solar Energy Materials and Solar Cells, 61: 107–112.
Leng J, Yu Z, Xue W, et al. (2010). Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition. Journal of Applied Physics, 108: 073109.
Li G, Xuan Q, Zhao X, et al. (2018). A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis. Applied Energy, 228: 1362–1372.
Li Y, He J (2021). Evaluating the improvement effect of low-energy strategies on the summer indoor thermal environment and cooling energy consumption in a library building: A case study in a hot-humid and less-windy city of China. Building Simulation, 14: 1423–1437.
Liu X, Cai X, Qiao J, et al. (2003). The design of ZnS/Ag/ZnS transparent conductive multilayer films. Thin Solid Films, 441: 200–206.
Liu Z, Wu D, Yu H, et al. (2018). Field measurement and numerical simulation of combined solar heating operation modes for domestic buildings based on the Qinghai-Tibetan Plateau case. Energy and Buildings, 167: 312–321.
Loka C, Park KR, Lee KS (2016). Multi-functional TiO2/Si/Ag(Cr)/TiN coatings for low-emissivity and hydrophilic applications. Applied Surface Science, 363: 439–444.
Nur-E-Alam M, Vasiliev M, Alameh K (2020). Dielectric/metal/dielectric (DMD) multilayers: Growth and stability of ultra-thin metal layers for transparent heat regulation (THR). In: Dalapati GK, Sharma M (eds), Energy Saving Coating Materials. Amsterdam: Elsevier.
Pasquarelli RM, Ginley DS, O’Hayre R (2011). Solution processing of transparent conductors: From flask to film. Chemical Society Reviews, 40: 5406–5441.
Sghiouri H, Charai M, Mezrhab A, et al. (2020). Comparison of passive cooling techniques in reducing overheating of clay-straw building in semi-arid climate. Building Simulation, 13: 65–88.
Sharma V, Kumar P, Kumar A, et al. (2017). High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Solar Energy Materials and Solar Cells, 169: 122–131.
Shi Y, Li W, Raman A, et al. (2018). Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics, 5: 684–691.
Valkonen E, Karlsson B, Ribbing C-G (1984). Solar optical properties of thin films of Cu, Ag, Au, Cr, Fe, Co, Ni and Al. Solar Energy, 32: 211–222.
Vasiliev M, Nur-E-Alam M, Alameh K (2020). Transparent heat regulation materials and coatings: Present status, challenges, and opportunity. In: Dalapati GK, Sharma M (eds), Energy Saving Coating Materials. Amsterdam: Elsevier.
Wang Z, Cai X, Chen Q, et al. (2007). Effects of Ti transition layer on stability of silver/titanium dioxide multilayered structure. Thin Solid Films, 515: 3146–3150.
Wang J, Shi D (2017). Spectral selective and photothermal nano structured thin films for energy efficient windows. Applied Energy, 208: 83–96.
Wang M, Hou J, Hu Z, et al. (2021a). Optimisation of the double skin facade in hot and humid climates through altering the design parameter combinations. Building Simulation, 14: 511–521.
Wang R, Lu S, Feng W, et al. (2021b). Tradeoff between heating energy demand in winter and indoor overheating risk in summer constrained by building standards. Building Simulation, 14: 987–1003.
Wu W, Skye HM (2018). Net-zero nation: HVAC and PV systems for residential net-zero energy buildings across the United States. Energy Conversion and Management, 177: 605–628.
Xue Q, Wang Z, Chen Q (2022). Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. Building Simulation, 15: 83–98.
Ye H, Meng X, Xu B (2012). Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window. Energy and Buildings, 49: 164–172.
Zhang M, Wang M, Jin W, et al. (2018). Managing energy efficiency of buildings in China: A survey of energy performance contracting (EPC) in building sector. Energy Policy, 114: 13–21.
Zhao Z, Alford TL (2016). The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit. Solar Energy Materials and Solar Cells, 157: 599–603.
Zhao W, He W, Hu Z, et al. (2022). Daylight and thermal performance of a switchable ethylene tetra-fluoro-ethylene cushion with dynamic control in different climates. Building Simulation, 15: 29–40.
Zou PXW, Wagle D, Alam M (2019). Strategies for minimizing building energy performance gaps between the design intend and the reality. Energy and Buildings, 191: 31–41.