Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet
Tài liệu tham khảo
Gerdroodbary, 2020, Computational investigation of multi hydrogen jets at inclined supersonic flow, Int. J. Energy Res.
Pish, 2019, The effect of coolant injection from the tip of spike on aerodynamic heating of nose cone at supersonic flow, Acta Astronaut., 154, 52, 10.1016/j.actaastro.2018.10.021
Gaitonde, 2015, Progress in shock wave/boundary layer interactions, Prog. Aero. Sci., 72, 80, 10.1016/j.paerosci.2014.09.002
Zuo, 2020, Investigation of conical shock wave/boundary layer interaction in axisymmetric internal flow, Aero. Sci. Technol., 106, 106106, 10.1016/j.ast.2020.106106
Jiang, 2020, Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators, J. Zhejiang Univ. - Sci., 21, 745, 10.1631/jzus.A2000025
Li, 2019, Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step, Aero. Sci. Technol., 84, 1011, 10.1016/j.ast.2018.11.005
Shinde, 2020, Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing, Aero. Sci. Technol., 96, 105545, 10.1016/j.ast.2019.105545
Boychev, 2020, Flow physics and sensitivity to RANS modelling assumptions of a multiple shock wave/turbulent boundary layer interaction, Aero. Sci. Technol., 97, 105640, 10.1016/j.ast.2019.105640
Panaras, 2015, Micro-vortex generators for shock wave/boundary layer interactions, Prog. Aero. Sci., 74, 16, 10.1016/j.paerosci.2014.12.006
Li, 2020, Mixing enhancement of multi hydrogen jets through the cavity flameholder with extended pylon, Acta Astronaut., 175, 300, 10.1016/j.actaastro.2020.06.002
Zhao, 2020, Experimental investigation on flow characteristics of a transverse jet with an upstream vortex generator, J. Zhejiang Univ. - Sci., 21, 636, 10.1631/jzus.A1900392
Peng, 2020, Mixing enhancement of the multi hydrogen fuel jets by the backward step, Energy, 203, 117859, 10.1016/j.energy.2020.117859
Li, 2020, The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow, Energy, 193, 1288, 10.1016/j.energy.2019.116801
Li, 2020, The influence of the sinusoidal shock generator on the mixing rate of multi hydrogen jets at supersonic flow, Aero. Sci. Technol., 96, 105579, 10.1016/j.ast.2019.105579
Li, 2020, The influence of the wedge shock generator on the vortex structure within the trapezoidal cavity at supersonic flow, Aero. Sci. Technol., 98, 105695, 10.1016/j.ast.2020.105695
Verma, 2018, Control of incident shock-induced separation using vane-type vortex-generating devices, AIAA J., 56, 1600, 10.2514/1.J056460
Knight, 2018, Hypersonic shock wave transitional boundary layer interactions – a review, Acta Astronaut., 151, 296, 10.1016/j.actaastro.2018.06.019
Huang, 2020, Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows, Acta Astronaut., 174, 103, 10.1016/j.actaastro.2020.05.001
Li, 2019, The optimization via response surface method for micro hydrogen gas actuator, Int. J. Hydrogen Energy, 44, 31633, 10.1016/j.ijhydene.2019.10.015
Choe Y, Kim C, Kim K. Effects of optimized bleed system on supersonic inlet performance and buzz. J. Propul. Power, in press, doi: 10.2514/1.B37474.
Weiss, 2014, Shock boundary layer interaction under the influence of a normal suction slot, Shock Waves, 24, 11, 10.1007/s00193-013-0456-5
Saad, 2012, Micro-ramps for hypersonic flow control, Micromachines, 3, 364, 10.3390/mi3020364
Martis, 2017, Separation attenuation in swept shock wave-boundary-layer interactions using different microvortex generator geometries, Shock Waves, 27, 747, 10.1007/s00193-016-0690-8
Wang, 2012, Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control, Phys. Fluids, 24
Giepman, 2014, Flow control of an oblique shock wave reflection with micro-ramp vortex generators: effects of location and size, Phys. Fluids, 26, 10.1063/1.4881941
Li, 2015, Separation topology of microramp vortex generator controlled flow at Mach number 2.5, J. Aircraft, 52, 2095, 10.2514/1.C033280
Szwaba, 2011, Comparison of the influence of different air-jet vortex generators on the separation region, Aero. Sci. Technol., 15, 45, 10.1016/j.ast.2010.06.001
Yan, 2013, Study on shock wave-vortex ring interaction by the micro vortex generator controlled ramp flow with turbulent inflow, Aero. Sci. Technol., 30, 226, 10.1016/j.ast.2013.08.006
Yan, 2014, Study on the ring-like vertical structure in MVG controlled supersonic ramp flow with different inflow conditions, Aero. Sci. Technol., 35, 106, 10.1016/j.ast.2014.03.013
Funderburk, 2019, Experimental investigation of microramp control of an axisymmetric shock/boundary-layer interaction, AIAA J., 57, 3379, 10.2514/1.J057846
Herges, 2010, Microramp flow control of normal shock/boundary-layer interactions, AIAA J., 48, 2529, 10.2514/1.J050313
Martis, 2014, Effect of microramps on separated swept shock wave-boundary-layer interactions, AIAA J., 52, 591, 10.2514/1.J052470
Vanstone, 2019, Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2, AIAA J., 57, 3395, 10.2514/1.J057874
Verma, 2017, Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation, AIAA J., 55, 2228, 10.2514/1.J055446
Wang, 2017, Effect of a transverse plasma jet on a shock wave induced by a ramp, Chin. J. Aeronaut., 30, 1854, 10.1016/j.cja.2017.09.004
Lee, 2011, Normal shock boundary layer control with various vortex generator geometries, Comput. Fluid, 49, 233, 10.1016/j.compfluid.2011.06.003
Kaushik, 2019, Experimental studies on micro-vortex generator controlled shock/boundary-layer interactions in Mach 2.2 intake, International Journal of Aeronautical and Space Sciences, 20, 584, 10.1007/s42405-019-00166-5
Grebert, 2018, Simulation of shock wave/turbulent boundary layer interaction with upstream micro vortex generators, Int. J. Heat Fluid Flow, 72, 73, 10.1016/j.ijheatfluidflow.2018.05.001
Koike, 2019, Vortex generators for corner separation caused by shock-wave/boundary-layer interactions, J. Aircraft, 56, 239, 10.2514/1.C034994
Sharma, 2016, Novel vortex generator for mitigation of shock-induced flow separation, J. Propul. Power, 32, 1264, 10.2514/1.B35962
Zhang, 2015, Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps, J. Propul. Power, 31, 133, 10.2514/1.B35299
Yang, 2016, ILES for mechanism of ramp-type MVG reducing shock induced flow separation, Sci. China Phys. Mech. Astron., 59, 124711, 10.1007/s11433-016-0348-2
Estruch-Samper, 2015, Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation, Shock Waves, 25, 521, 10.1007/s00193-014-0514-7
Yan, 2017, Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5, Shock Waves, 27, 79, 10.1007/s00193-016-0633-4
Liu, 2019, Flow control in supersonic flow field based on micro jets, Adv. Mech. Eng., 11, 1, 10.1177/1687814018821526
Verma, 2019, Control of compression-ramp-induced interaction with steady microjets, AIAA J., 57, 2892, 10.2514/1.J057509
Yang, 2016, Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control, Chin. J. Aeronaut., 29, 617, 10.1016/j.cja.2016.04.001
Wang, 2017, Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array, Int. J. Heat Fluid Flow, 67, 133, 10.1016/j.ijheatfluidflow.2017.08.004
Szwaba, 2013, Influence of air-jet vortex generator diameter on separation region, J. Therm. Sci., 22, 294, 10.1007/s11630-013-0627-9
Narayanaswamy, 2012, Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator, Phys. Fluids, 24, 10.1063/1.4731292
Verma, 2015, Control of shock-wave boundary layer interaction using steady micro-jets, Shock Waves, 25, 535, 10.1007/s00193-014-0508-5
Su, 2010, MHD flow control of oblique shock waves around ramps in low-temperature supersonic flows, Chin. J. Aeronaut., 23, 22, 10.1016/S1000-9361(09)60183-7
Pasquariello, 2014, Large-eddy simulation of passive shock-wave/boundary-layer interaction control, Int. J. Heat Fluid Flow, 49, 116, 10.1016/j.ijheatfluidflow.2014.04.005
Yan, 2020, Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow, Acta Astronaut., 173, 131, 10.1016/j.actaastro.2020.04.003
Huang, 2014, Multi-objective design optimization of the transverse gaseous jet in supersonic flows, Acta Astronaut., 93, 13, 10.1016/j.actaastro.2013.06.027
Ou, 2019, Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model, Acta Astronaut., 155, 287, 10.1016/j.actaastro.2018.12.012
Zhang, 2019, Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach, Energy Convers. Manag., 195, 712, 10.1016/j.enconman.2019.05.055
Huang, 2012, Effect of geometric parameters on the drag of the cavity flameholder based on the variance analysis method, Aero. Sci. Technol., 21, 24, 10.1016/j.ast.2011.04.009
Huang, 2013, Design exploration for a single expansion ramp nozzle (SERN) using data mining, Acta Astronuatica, 83, 10, 10.1016/j.actaastro.2012.09.016
Huang, 2014, Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches, Int. J. Hydrogen Energy, 39, 3914, 10.1016/j.ijhydene.2013.12.129
2006
Li, 2017, Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows, Aero. Sci. Technol., 68, 77, 10.1016/j.ast.2017.05.016
Du, 2018, Investigation on gaseous jet in forebody/inlet for shock-induced combustion ramjet (shcramjet) engines, Acta Astronaut., 152, 262, 10.1016/j.actaastro.2018.08.030
Huang, 2012, Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows, Acta Astronaut., 73, 1, 10.1016/j.actaastro.2011.12.003
Schulein, 2006, Skin-friction and heat flux measurements in shock/boundary-layer interaction flows, AIAA J., 44, 1732, 10.2514/1.15110
Hayashi, 2006, Experimental study on thermal protection system by opposing jet in supersonic flow, J. Spacecraft Rockets, 43, 233, 10.2514/1.15332
Zhang, 2018, Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows, Acta Astronaut., 146, 123, 10.1016/j.actaastro.2018.02.040
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017
Jeong, 2005, Efficient optimization design method using Kriging model, J. Aircraft, 42, 413, 10.2514/1.6386
Jeong, 2011, Review of data mining for multi-disciplinary design optimization, Proceedings of the Institution of Mechanical, 225, 469, 10.1177/09544100JAERO906