Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet

Acta Astronautica - Tập 181 - Trang 468-481 - 2021
Zhao-bo Du1, Chi-bing Shen1, Yang Shen1, Wei Huang1, Li Yan1
1Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China

Tài liệu tham khảo

Gerdroodbary, 2020, Computational investigation of multi hydrogen jets at inclined supersonic flow, Int. J. Energy Res. Pish, 2019, The effect of coolant injection from the tip of spike on aerodynamic heating of nose cone at supersonic flow, Acta Astronaut., 154, 52, 10.1016/j.actaastro.2018.10.021 Gaitonde, 2015, Progress in shock wave/boundary layer interactions, Prog. Aero. Sci., 72, 80, 10.1016/j.paerosci.2014.09.002 Zuo, 2020, Investigation of conical shock wave/boundary layer interaction in axisymmetric internal flow, Aero. Sci. Technol., 106, 106106, 10.1016/j.ast.2020.106106 Jiang, 2020, Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators, J. Zhejiang Univ. - Sci., 21, 745, 10.1631/jzus.A2000025 Li, 2019, Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step, Aero. Sci. Technol., 84, 1011, 10.1016/j.ast.2018.11.005 Shinde, 2020, Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing, Aero. Sci. Technol., 96, 105545, 10.1016/j.ast.2019.105545 Boychev, 2020, Flow physics and sensitivity to RANS modelling assumptions of a multiple shock wave/turbulent boundary layer interaction, Aero. Sci. Technol., 97, 105640, 10.1016/j.ast.2019.105640 Panaras, 2015, Micro-vortex generators for shock wave/boundary layer interactions, Prog. Aero. Sci., 74, 16, 10.1016/j.paerosci.2014.12.006 Li, 2020, Mixing enhancement of multi hydrogen jets through the cavity flameholder with extended pylon, Acta Astronaut., 175, 300, 10.1016/j.actaastro.2020.06.002 Zhao, 2020, Experimental investigation on flow characteristics of a transverse jet with an upstream vortex generator, J. Zhejiang Univ. - Sci., 21, 636, 10.1631/jzus.A1900392 Peng, 2020, Mixing enhancement of the multi hydrogen fuel jets by the backward step, Energy, 203, 117859, 10.1016/j.energy.2020.117859 Li, 2020, The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow, Energy, 193, 1288, 10.1016/j.energy.2019.116801 Li, 2020, The influence of the sinusoidal shock generator on the mixing rate of multi hydrogen jets at supersonic flow, Aero. Sci. Technol., 96, 105579, 10.1016/j.ast.2019.105579 Li, 2020, The influence of the wedge shock generator on the vortex structure within the trapezoidal cavity at supersonic flow, Aero. Sci. Technol., 98, 105695, 10.1016/j.ast.2020.105695 Verma, 2018, Control of incident shock-induced separation using vane-type vortex-generating devices, AIAA J., 56, 1600, 10.2514/1.J056460 Knight, 2018, Hypersonic shock wave transitional boundary layer interactions – a review, Acta Astronaut., 151, 296, 10.1016/j.actaastro.2018.06.019 Huang, 2020, Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows, Acta Astronaut., 174, 103, 10.1016/j.actaastro.2020.05.001 Li, 2019, The optimization via response surface method for micro hydrogen gas actuator, Int. J. Hydrogen Energy, 44, 31633, 10.1016/j.ijhydene.2019.10.015 Choe Y, Kim C, Kim K. Effects of optimized bleed system on supersonic inlet performance and buzz. J. Propul. Power, in press, doi: 10.2514/1.B37474. Weiss, 2014, Shock boundary layer interaction under the influence of a normal suction slot, Shock Waves, 24, 11, 10.1007/s00193-013-0456-5 Saad, 2012, Micro-ramps for hypersonic flow control, Micromachines, 3, 364, 10.3390/mi3020364 Martis, 2017, Separation attenuation in swept shock wave-boundary-layer interactions using different microvortex generator geometries, Shock Waves, 27, 747, 10.1007/s00193-016-0690-8 Wang, 2012, Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control, Phys. Fluids, 24 Giepman, 2014, Flow control of an oblique shock wave reflection with micro-ramp vortex generators: effects of location and size, Phys. Fluids, 26, 10.1063/1.4881941 Li, 2015, Separation topology of microramp vortex generator controlled flow at Mach number 2.5, J. Aircraft, 52, 2095, 10.2514/1.C033280 Szwaba, 2011, Comparison of the influence of different air-jet vortex generators on the separation region, Aero. Sci. Technol., 15, 45, 10.1016/j.ast.2010.06.001 Yan, 2013, Study on shock wave-vortex ring interaction by the micro vortex generator controlled ramp flow with turbulent inflow, Aero. Sci. Technol., 30, 226, 10.1016/j.ast.2013.08.006 Yan, 2014, Study on the ring-like vertical structure in MVG controlled supersonic ramp flow with different inflow conditions, Aero. Sci. Technol., 35, 106, 10.1016/j.ast.2014.03.013 Funderburk, 2019, Experimental investigation of microramp control of an axisymmetric shock/boundary-layer interaction, AIAA J., 57, 3379, 10.2514/1.J057846 Herges, 2010, Microramp flow control of normal shock/boundary-layer interactions, AIAA J., 48, 2529, 10.2514/1.J050313 Martis, 2014, Effect of microramps on separated swept shock wave-boundary-layer interactions, AIAA J., 52, 591, 10.2514/1.J052470 Vanstone, 2019, Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2, AIAA J., 57, 3395, 10.2514/1.J057874 Verma, 2017, Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation, AIAA J., 55, 2228, 10.2514/1.J055446 Wang, 2017, Effect of a transverse plasma jet on a shock wave induced by a ramp, Chin. J. Aeronaut., 30, 1854, 10.1016/j.cja.2017.09.004 Lee, 2011, Normal shock boundary layer control with various vortex generator geometries, Comput. Fluid, 49, 233, 10.1016/j.compfluid.2011.06.003 Kaushik, 2019, Experimental studies on micro-vortex generator controlled shock/boundary-layer interactions in Mach 2.2 intake, International Journal of Aeronautical and Space Sciences, 20, 584, 10.1007/s42405-019-00166-5 Grebert, 2018, Simulation of shock wave/turbulent boundary layer interaction with upstream micro vortex generators, Int. J. Heat Fluid Flow, 72, 73, 10.1016/j.ijheatfluidflow.2018.05.001 Koike, 2019, Vortex generators for corner separation caused by shock-wave/boundary-layer interactions, J. Aircraft, 56, 239, 10.2514/1.C034994 Sharma, 2016, Novel vortex generator for mitigation of shock-induced flow separation, J. Propul. Power, 32, 1264, 10.2514/1.B35962 Zhang, 2015, Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps, J. Propul. Power, 31, 133, 10.2514/1.B35299 Yang, 2016, ILES for mechanism of ramp-type MVG reducing shock induced flow separation, Sci. China Phys. Mech. Astron., 59, 124711, 10.1007/s11433-016-0348-2 Estruch-Samper, 2015, Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation, Shock Waves, 25, 521, 10.1007/s00193-014-0514-7 Yan, 2017, Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5, Shock Waves, 27, 79, 10.1007/s00193-016-0633-4 Liu, 2019, Flow control in supersonic flow field based on micro jets, Adv. Mech. Eng., 11, 1, 10.1177/1687814018821526 Verma, 2019, Control of compression-ramp-induced interaction with steady microjets, AIAA J., 57, 2892, 10.2514/1.J057509 Yang, 2016, Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control, Chin. J. Aeronaut., 29, 617, 10.1016/j.cja.2016.04.001 Wang, 2017, Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array, Int. J. Heat Fluid Flow, 67, 133, 10.1016/j.ijheatfluidflow.2017.08.004 Szwaba, 2013, Influence of air-jet vortex generator diameter on separation region, J. Therm. Sci., 22, 294, 10.1007/s11630-013-0627-9 Narayanaswamy, 2012, Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator, Phys. Fluids, 24, 10.1063/1.4731292 Verma, 2015, Control of shock-wave boundary layer interaction using steady micro-jets, Shock Waves, 25, 535, 10.1007/s00193-014-0508-5 Su, 2010, MHD flow control of oblique shock waves around ramps in low-temperature supersonic flows, Chin. J. Aeronaut., 23, 22, 10.1016/S1000-9361(09)60183-7 Pasquariello, 2014, Large-eddy simulation of passive shock-wave/boundary-layer interaction control, Int. J. Heat Fluid Flow, 49, 116, 10.1016/j.ijheatfluidflow.2014.04.005 Yan, 2020, Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow, Acta Astronaut., 173, 131, 10.1016/j.actaastro.2020.04.003 Huang, 2014, Multi-objective design optimization of the transverse gaseous jet in supersonic flows, Acta Astronaut., 93, 13, 10.1016/j.actaastro.2013.06.027 Ou, 2019, Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model, Acta Astronaut., 155, 287, 10.1016/j.actaastro.2018.12.012 Zhang, 2019, Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach, Energy Convers. Manag., 195, 712, 10.1016/j.enconman.2019.05.055 Huang, 2012, Effect of geometric parameters on the drag of the cavity flameholder based on the variance analysis method, Aero. Sci. Technol., 21, 24, 10.1016/j.ast.2011.04.009 Huang, 2013, Design exploration for a single expansion ramp nozzle (SERN) using data mining, Acta Astronuatica, 83, 10, 10.1016/j.actaastro.2012.09.016 Huang, 2014, Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches, Int. J. Hydrogen Energy, 39, 3914, 10.1016/j.ijhydene.2013.12.129 2006 Li, 2017, Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows, Aero. Sci. Technol., 68, 77, 10.1016/j.ast.2017.05.016 Du, 2018, Investigation on gaseous jet in forebody/inlet for shock-induced combustion ramjet (shcramjet) engines, Acta Astronaut., 152, 262, 10.1016/j.actaastro.2018.08.030 Huang, 2012, Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows, Acta Astronaut., 73, 1, 10.1016/j.actaastro.2011.12.003 Schulein, 2006, Skin-friction and heat flux measurements in shock/boundary-layer interaction flows, AIAA J., 44, 1732, 10.2514/1.15110 Hayashi, 2006, Experimental study on thermal protection system by opposing jet in supersonic flow, J. Spacecraft Rockets, 43, 233, 10.2514/1.15332 Zhang, 2018, Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows, Acta Astronaut., 146, 123, 10.1016/j.actaastro.2018.02.040 Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017 Jeong, 2005, Efficient optimization design method using Kriging model, J. Aircraft, 42, 413, 10.2514/1.6386 Jeong, 2011, Review of data mining for multi-disciplinary design optimization, Proceedings of the Institution of Mechanical, 225, 469, 10.1177/09544100JAERO906