Design considerations for a novel shape-memory-plate osteosynthesis allowing for non-invasive alteration of bending stiffness
Tài liệu tham khảo
Augat, 2005, Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone, Osteoporos. Int., 16, S36, 10.1007/s00198-004-1728-9
Claes, 2009, Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model, J. Orthop. Res. Off. Publ. Orthop. Res. Soc., 27, 22, 10.1002/jor.20712
Decker, 2015, A nickel-titanium shape memory alloy plate for contactless inverse dynamization after internal fixation in a sheep tibia fracture model: a pilot study, Technol. Health Care Off J. Eur. Soc. Eng. Med., 23, 463
Durall, 2004, Effects of static fixation and dynamization after interlocking femoral nailing locked with an external fixator: an experimental study in dogs, Vet. Surg., 33, 323, 10.1111/j.1532-950X.2004.04047.x
Einhorn, 1998, The cell and molecular biology of fracture healing, Clin. Orthop., S7, 10.1097/00003086-199810001-00003
Epari, 2007, Timely fracture-healing requires optimization of axial fixation stability, J. Bone Jt. Surg., 89, 1575, 10.2106/00004623-200707000-00022
Hente, 2004, The influence of cyclic compression and distraction on the healing of experimental tibial fractures, J. Orthop. Res., 22, 709, 10.1016/j.orthres.2003.11.007
Huang, 1998, Effects of internal stress and martensite variants on phase transformation of NiTi shape memory alloy, J. Mater. Sci. Lett., 17, 1843, 10.1023/A:1006682226289
Klein, 2003, The initial phase of fracture healing is specifically sensitive to mechanical conditions, J. Orthop. Res., 21, 662, 10.1016/S0736-0266(02)00259-0
Lienau, 2005, Initial vascularization and tissue differentiation are influenced by fixation stability, J. Orthop. Res. Off. Publ. Orthop. Res. Soc., 23, 639, 10.1016/j.orthres.2004.09.006
Mencík, 2013, 42
Mueller, 2010, Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater., 6, 1749, 10.1016/j.actbio.2009.12.048
Müller, 2010, Electromagnetic induction heating of an orthopaedic nickel–titanium shape memory device, J. Orthop. Res., 28, 1671, 10.1002/jor.21171
Müller, 2014, Transcutaneous electromagnetic induction heating of an intramedullary nickel–titanium shape memory implant, Int. Orthop., 38, 2551, 10.1007/s00264-014-2460-5
Müller, 2015, Memory plate osteosynthesis for noninvasive modulation of fixation stiffness in a rabbit tibia osteotomy model, BioMed. Res. Int., 2015, 10.1155/2015/652940
Olender, 2011, A preliminary study of bending stiffness alteration in shape changing nitinol plates for fracture fixation, Ann. Biomed. Eng., 39, 1546, 10.1007/s10439-011-0257-x
Perren, 2002, Evolution of the internal fixation of long bone fractures the scientific basis of biological internal fixation: choosing a new balance between stability and biology, J. Bone Jt. Surg. Br., 84–B, 1093, 10.1302/0301-620X.84B8.0841093
Pfeifer, 2013, Noninvasive induction implant heating: an approach for contactless altering of mechanical properties of shape memory implants, Med. Eng. Phys., 35, 54, 10.1016/j.medengphy.2012.03.010
Schell, 2005, The course of bone healing is influenced by the initial shear fixation stability, J. Orthop. Res., 23, 1022, 10.1016/j.orthres.2005.03.005
Thompson, 2002, A model for intramembranous ossification during fracture healing, J. Orthop. Res., 20, 1091, 10.1016/S0736-0266(02)00017-7
Tigani, 2005, Interlocking nail for femoral shaft fractures: is dynamization always necessary?, Int. Orthop., 29, 101, 10.1007/s00264-004-0627-1
Van Humbeeck, J., Stalmans, R., 2002. Shape memory alloys, types and functionalities. In: Encycl. Smart Mater., John Wiley & Sons, Inc. 〈http://onlinelibrary.wiley.com/doi/10.1002/0471216275.esm073/abstract〉, (Accessed 24 November 2015).